These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29475869)

  • 1. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
    Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus".
    Lee LL; Izquierdo JA; Blumer-Schuette SE; Zurawski JV; Conway JM; Cottingham RW; Huntemann M; Copeland A; Chen IM; Kyrpides N; Markowitz V; Palaniappan K; Ivanova N; Mikhailova N; Ovchinnikova G; Andersen E; Pati A; Stamatis D; Reddy TB; Shapiro N; Nordberg HP; Cantor MN; Hua SX; Woyke T; Kelly RM
    Genome Announc; 2015 May; 3(3):. PubMed ID: 25977428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization.
    Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355
    [No Abstract]   [Full Text] [Related]  

  • 8. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass.
    Blumer-Schuette SE; Giannone RJ; Zurawski JV; Ozdemir I; Ma Q; Yin Y; Xu Y; Kataeva I; Poole FL; Adams MW; Hamilton-Brehm SD; Elkins JG; Larimer FW; Land ML; Hauser LJ; Cottingham RW; Hettich RL; Kelly RM
    J Bacteriol; 2012 Aug; 194(15):4015-28. PubMed ID: 22636774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms.
    Khan AMAM; Mendoza C; Hauk VJ; Blumer-Schuette SE
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1251-1263. PubMed ID: 31392469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome.
    Conway JM; Crosby JR; McKinley BS; Seals NL; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2018 Oct; 115(10):2426-2440. PubMed ID: 29969511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile
    Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW
    mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism.
    Khan AMAM; Hauk VJ; Ibrahim M; Raffel TR; Blumer-Schuette SE
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity.
    Straub CT; Khatibi PA; Otten JK; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2019 Aug; 116(8):1901-1908. PubMed ID: 30982956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
    Svetlitchnyi VA; Kensch O; Falkenhan DA; Korseska SG; Lippert N; Prinz M; Sassi J; Schickor A; Curvers S
    Biotechnol Biofuels; 2013 Feb; 6(1):31. PubMed ID: 23448304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.
    Conway JM; Pierce WS; Le JH; Harper GW; Wright JH; Tucker AL; Zurawski JV; Lee LL; Blumer-Schuette SE; Kelly RM
    J Biol Chem; 2016 Mar; 291(13):6732-47. PubMed ID: 26814128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii.
    Laemthong T; Bing RG; Crosby JR; Manesh MJH; Adams MWW; Kelly RM
    Extremophiles; 2023 Feb; 27(1):6. PubMed ID: 36802247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.
    Blumer-Schuette SE; Alahuhta M; Conway JM; Lee LL; Zurawski JV; Giannone RJ; Hettich RL; Lunin VV; Himmel ME; Kelly RM
    J Biol Chem; 2015 Apr; 290(17):10645-56. PubMed ID: 25720489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'.
    Lee LL; Crosby JR; Rubinstein GM; Laemthong T; Bing RG; Straub CT; Adams MWW; Kelly RM
    Extremophiles; 2020 Jan; 24(1):1-15. PubMed ID: 31359136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.