These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29475947)

  • 1. Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore.
    Li MS; Cowley EA; El Hiani Y; Linsdell P
    J Biol Chem; 2018 Apr; 293(15):5649-5658. PubMed ID: 29475947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.
    El Hiani Y; Negoda A; Linsdell P
    Cell Mol Life Sci; 2016 May; 73(9):1917-25. PubMed ID: 26659082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance.
    Linsdell P; Irving CL; Cowley EA; El Hiani Y
    Cell Mol Life Sci; 2021 Jun; 78(12):5213-5223. PubMed ID: 34023918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trivalent anions as probes of the CFTR channel pore.
    Linsdell P
    Gen Physiol Biophys; 2024 May; 43(3):197-207. PubMed ID: 38774920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture and functional properties of the CFTR channel pore.
    Linsdell P
    Cell Mol Life Sci; 2017 Jan; 74(1):67-83. PubMed ID: 27699452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled movement of permeant and blocking ions in the CFTR chloride channel pore.
    Gong X; Linsdell P
    J Physiol; 2003 Jun; 549(Pt 2):375-85. PubMed ID: 12679371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines.
    Linsdell P; Zheng SX; Hanrahan JW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):1-16. PubMed ID: 9729613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels.
    Tabcharani JA; Linsdell P; Hanrahan JW
    J Gen Physiol; 1997 Oct; 110(4):341-54. PubMed ID: 9379167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational change of the extracellular parts of the CFTR protein during channel gating.
    Negoda A; Cowley EA; El Hiani Y; Linsdell P
    Cell Mol Life Sci; 2018 Aug; 75(16):3027-3038. PubMed ID: 29441426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    Br J Pharmacol; 1999 Mar; 126(6):1471-7. PubMed ID: 10217542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
    Li MS; Demsey AF; Qi J; Linsdell P
    Br J Pharmacol; 2009 Jul; 157(6):1065-71. PubMed ID: 19466983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns.
    Smith SS; Steinle ED; Meyerhoff ME; Dawson DC
    J Gen Physiol; 1999 Dec; 114(6):799-818. PubMed ID: 10578016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotine Induces Progressive Properties of Lung Adenocarcinoma A549 Cells by Inhibiting Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Expression and Plasma Membrane Localization.
    Li H; Ma N; Wang J; Wang Y; Yuan C; Wu J; Luo M; Yang J; Chen J; Shi J; Liu X
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818809984. PubMed ID: 30384810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering the chloride pathway in the CFTR channel.
    Farkas B; Tordai H; Padányi R; Tordai A; Gera J; Paragi G; Hegedűs T
    Cell Mol Life Sci; 2020 Feb; 77(4):765-778. PubMed ID: 31327045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
    Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS
    Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia.
    Ostedgaard LS; Randak C; Rokhlina T; Karp P; Vermeer D; Ashbourne Excoffon KJ; Welsh MJ
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1937-42. PubMed ID: 12578973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR is a mechanosensitive anion channel: a real stretch?
    Gray MA
    Cellscience; 2010 Jan; 7(1):1-7. PubMed ID: 21151762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic Cl
    He M; Ye W; Wang WJ; Sison ES; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11161-E11169. PubMed ID: 29229864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR channel pharmacology: novel pore blockers identified by high-throughput screening.
    Sheppard DN
    J Gen Physiol; 2004 Aug; 124(2):109-13. PubMed ID: 15277572
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.