BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29476087)

  • 1. Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts.
    Nel P; Bertrand S; Nel A
    Sci Rep; 2018 Feb; 8(1):3516. PubMed ID: 29476087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies.
    Ren D; Labandeira CC; Santiago-Blay JA; Rasnitsyn A; Shih C; Bashkuev A; Logan MA; Hotton CL; Dilcher D
    Science; 2009 Nov; 326(5954):840-7. PubMed ID: 19892981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle Jurassic insect mines on gymnosperms provide missing links to early mining evolution.
    Xiao L; Labandeira CC; Wu Y; Shih C; Ren D; Wang Y
    New Phytol; 2024 Jun; 242(6):2803-2816. PubMed ID: 38184785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution.
    Romano C; Koot MB; Kogan I; Brayard A; Minikh AV; Brinkmann W; Bucher H; Kriwet J
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):106-47. PubMed ID: 25431138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complete insect from the Late Devonian period.
    Garrouste R; Clément G; Nel P; Engel MS; Grandcolas P; D'Haese C; Lagebro L; Denayer J; Gueriau P; Lafaite P; Olive S; Prestianni C; Nel A
    Nature; 2012 Aug; 488(7409):82-5. PubMed ID: 22859205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria).
    Huang DY; Bechly G; Nel P; Engel MS; Prokop J; Azar D; Cai CY; van de Kamp T; Staniczek AH; Garrouste R; Krogmann L; Dos Santos Rolo T; Baumbach T; Ohlhoff R; Shmakov AS; Bourgoin T; Nel A
    Sci Rep; 2016 Mar; 6():23004. PubMed ID: 26961785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early evolution of beetles regulated by the end-Permian deforestation.
    Zhao X; Yu Y; Clapham ME; Yan E; Chen J; Jarzembowski EA; Zhao X; Wang B
    Elife; 2021 Nov; 10():. PubMed ID: 34747694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The earliest beetle with mouthparts specialized for feeding on nectar is a parasitoid of mid-Cretaceous Hymenoptera.
    Batelka J; Prokop J
    BMC Ecol Evol; 2021 Nov; 21(1):207. PubMed ID: 34809578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible long-proboscid insect pollinators from the Early Permian of Russia.
    Khramov AV; Naugolnykh SV; Węgierek P
    Curr Biol; 2022 Sep; 32(17):3815-3820.e2. PubMed ID: 35858616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy.
    Labandeira CC; Kustatscher E; Wappler T
    PLoS One; 2016; 11(11):e0165205. PubMed ID: 27829032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancient pinnate leaf mimesis among lacewings.
    Wang Y; Liu Z; Wang X; Shih C; Zhao Y; Engel MS; Ren D
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16212-5. PubMed ID: 20805491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber.
    Lin X; Labandeira CC; Shih C; Hotton CL; Ren D
    Nat Commun; 2019 Mar; 10(1):1235. PubMed ID: 30874563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cretaceous peak in family-level insect diversity estimated with mark-recapture methodology.
    Schachat SR; Labandeira CC; Clapham ME; Payne JL
    Proc Biol Sci; 2019 Dec; 286(1917):20192054. PubMed ID: 31847775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate extensive ichthyosaur survival across the Jurassic-Cretaceous boundary.
    Fischer V; Maisch MW; Naish D; Kosma R; Liston J; Joger U; Krüger FJ; Pérez JP; Tainsh J; Appleby RM
    PLoS One; 2012; 7(1):e29234. PubMed ID: 22235274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction.
    Stubbs TL; Pierce SE; Rayfield EJ; Anderson PS
    Proc Biol Sci; 2013 Nov; 280(1770):20131940. PubMed ID: 24026826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events.
    Smithwick FM; Stubbs TL
    Evolution; 2018 Feb; 72(2):348-362. PubMed ID: 29315531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early high rates and disparity in the evolution of ichthyosaurs.
    Moon BC; Stubbs TL
    Commun Biol; 2020 Feb; 3(1):68. PubMed ID: 32054967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects.
    Condamine FL; Nel A; Grandcolas P; Legendre F
    Cladistics; 2020 Aug; 36(4):394-412. PubMed ID: 34619806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera).
    Yang Q; Wang Y; Labandeira CC; Shih C; Ren D
    BMC Evol Biol; 2014 Jun; 14():126. PubMed ID: 24912379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.
    Silvestro D; Cascales-Miñana B; Bacon CD; Antonelli A
    New Phytol; 2015 Jul; 207(2):425-436. PubMed ID: 25619401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.