These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29476160)

  • 1. Controlling and modelling the wetting properties of III-V semiconductor surfaces using re-entrant nanostructures.
    Ng WH; Lu Y; Liu H; Carmalt CJ; Parkin IP; Kenyon AJ
    Sci Rep; 2018 Feb; 8(1):3544. PubMed ID: 29476160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uni-directional liquid spreading on asymmetric nanostructured surfaces.
    Chu KH; Xiao R; Wang EN
    Nat Mater; 2010 May; 9(5):413-7. PubMed ID: 20348909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO
    Pendurthi A; Movafaghi S; Wang W; Shadman S; Yalin AP; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25656-25661. PubMed ID: 28731320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterned arrays of ordered peptide nanostructures.
    Adler-Abramovich L; Aronov D; Gazit E; Rosenman G
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1701-8. PubMed ID: 19435028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indium phosphide nanowires and their applications in optoelectronic devices.
    Zafar F; Iqbal A
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150804. PubMed ID: 27118920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.
    Bao RR; Zhang CY; Zhang XJ; Ou XM; Lee CS; Jie JS; Zhang XH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5757-62. PubMed ID: 23742204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil.
    Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcination-free micropatterning of rare-earth-ion-doped nanoparticle films on wettability-patterned surfaces of plastic sheets.
    Watanabe S; Hamada Y; Hyodo H; Soga K; Matsumoto M
    J Colloid Interface Sci; 2014 May; 422():58-64. PubMed ID: 24655829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing with barnacle cement: wetting resistance of a re-entrant surface reduces underwater adhesion of barnacles.
    Petersen DS; Kleinteich T; Gorb SN; Heepe L
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30135262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y; Gan L; Dai L; Dai Y; Guo X; Meng H; Yu B; Shi Z; Shang K; Qin G
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of patterned solid surfaces with highly controllable wettability.
    Wang M; Guo CF; Wang X; Xiang B; Qiu M; He T; Yang H; Chen Y; Dong J; Liu Q; Ruan S
    RSC Adv; 2021 Sep; 11(51):31877-31883. PubMed ID: 35495539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient wettability induced by deterministically patterned nanostructures.
    Min S; Li S; Zhu Z; Li W; Tang X; Liang C; Wang L; Cheng X; Li WD
    Microsyst Nanoeng; 2020; 6():106. PubMed ID: 34567715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance.
    Gou X; Guo Z
    Adv Colloid Interface Sci; 2019 Jul; 269():87-121. PubMed ID: 31059923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars.
    Higuera-Rodriguez A; Romeira B; Birindelli S; Black LE; Smalbrugge E; van Veldhoven PJ; Kessels WM; Smit MK; Fiore A
    Nano Lett; 2017 Apr; 17(4):2627-2633. PubMed ID: 28340296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.