These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 29476344)
1. Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines. Skelton J; Jusino MA; Li Y; Bateman C; Thai PH; Wu C; Lindner DL; Hulcr J Microb Ecol; 2018 Oct; 76(3):839-850. PubMed ID: 29476344 [TBL] [Abstract][Full Text] [Related]
2. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mayers CG; Harrington TC; Mcnew DL; Roeper RA; Biedermann PHW; Masuya H; Bateman CC Mycologia; 2020; 112(6):1104-1137. PubMed ID: 32552515 [TBL] [Abstract][Full Text] [Related]
3. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. Kostovcik M; Bateman CC; Kolarik M; Stelinski LL; Jordal BH; Hulcr J ISME J; 2015 Jan; 9(1):126-38. PubMed ID: 25083930 [TBL] [Abstract][Full Text] [Related]
5. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Vanderpool D; Bracewell RR; McCutcheon JP Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025 [TBL] [Abstract][Full Text] [Related]
6. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Skelton J; Jusino MA; Carlson PS; Smith K; Banik MT; Lindner DL; Palmer JM; Hulcr J Mol Ecol; 2019 Nov; 28(22):4971-4986. PubMed ID: 31596982 [TBL] [Abstract][Full Text] [Related]
7. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523 [TBL] [Abstract][Full Text] [Related]
8. Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Joseph R; Keyhani NO Appl Microbiol Biotechnol; 2021 May; 105(9):3393-3410. PubMed ID: 33837831 [TBL] [Abstract][Full Text] [Related]
9. Ecological and Evolutionary Determinants of Bark Beetle -Fungus Symbioses. Six DL Insects; 2012 Mar; 3(1):339-66. PubMed ID: 26467964 [TBL] [Abstract][Full Text] [Related]
10. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Hulcr J; Stelinski LL Annu Rev Entomol; 2017 Jan; 62():285-303. PubMed ID: 27860522 [TBL] [Abstract][Full Text] [Related]
11. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Mayers CG; McNew DL; Harrington TC; Roeper RA; Fraedrich SW; Biedermann PHW; Castrillo LA; Reed SE Fungal Biol; 2015 Nov; 119(11):1075-1092. PubMed ID: 26466881 [TBL] [Abstract][Full Text] [Related]
12. Fungal Associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) Are Spatially Segregated on the Insect Body. Bateman C; Šigut M; Skelton J; Smith KE; Hulcr J Environ Entomol; 2016 Aug; 45(4):883-90. PubMed ID: 27357160 [TBL] [Abstract][Full Text] [Related]
13. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Romón P; Zhou X; Iturrondobeitia JC; Wingfield MJ; Goldarazena A Can J Microbiol; 2007 Jun; 53(6):756-67. PubMed ID: 17668036 [TBL] [Abstract][Full Text] [Related]
14. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Farrell BD; Sequeira AS; O'Meara BC; Normark BB; Chung JH; Jordal BH Evolution; 2001 Oct; 55(10):2011-27. PubMed ID: 11761062 [TBL] [Abstract][Full Text] [Related]
15. Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae). Gonzalez-Escobedo R; Briones-Roblero CI; López MF; Rivera-Orduña FN; Zúñiga G Microb Ecol; 2019 Jul; 78(1):102-112. PubMed ID: 30349964 [TBL] [Abstract][Full Text] [Related]
16. Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles. Lehenberger M; Benkert M; Biedermann PHW Front Microbiol; 2020; 11():590111. PubMed ID: 33519728 [TBL] [Abstract][Full Text] [Related]
17. Ophiostomatalean fungi associated with wood boring beetles in South Africa including two new species. Nel WJ; Wingfield MJ; de Beer ZW; Duong TA Antonie Van Leeuwenhoek; 2021 Jun; 114(6):667-686. PubMed ID: 33677752 [TBL] [Abstract][Full Text] [Related]
18. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Bleiker KP; Six DL Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867 [TBL] [Abstract][Full Text] [Related]
19. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control. Kandasamy D; Gershenzon J; Hammerbacher A J Chem Ecol; 2016 Sep; 42(9):952-969. PubMed ID: 27687998 [TBL] [Abstract][Full Text] [Related]
20. Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Cheng C; Wickham JD; Chen L; Xu D; Lu M; Sun J Microbiome; 2018 Jul; 6(1):132. PubMed ID: 30053907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]