These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29476508)

  • 21. i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins.
    Wada K; Ogiwara A; Nagasaka K; Tanaka N; Komatsu Y
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):960-8. PubMed ID: 21416533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid chromatography/tandem mass spectrometry based targeted proteomics quantification of P-glycoprotein in various biological samples.
    Zhang Y; Li N; Brown PW; Ozer JS; Lai Y
    Rapid Commun Mass Spectrom; 2011 Jun; 25(12):1715-24. PubMed ID: 21598331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry.
    Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y
    BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative LC-MS: a landscape of peaks and valleys.
    America AH; Cordewener JH
    Proteomics; 2008 Feb; 8(4):731-49. PubMed ID: 18297651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of liquid chromatography-tandem mass spectrometry-based targeted proteomics and conventional analytical methods for the determination of P-glycoprotein in human breast cancer cells.
    Yang T; Xu F; Xu J; Fang D; Yu Y; Chen Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():18-24. PubMed ID: 23968647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.
    Al Feteisi H; Achour B; Rostami-Hodjegan A; Barber J
    Expert Opin Drug Metab Toxicol; 2015; 11(9):1357-69. PubMed ID: 26108733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative peptidomics of mice lacking peptide-processing enzymes.
    Wardman J; Fricker LD
    Methods Mol Biol; 2011; 768():307-23. PubMed ID: 21805251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-Free Quantitation of Endogenous Peptides.
    Abid MSR; Qiu H; Checco JW
    Methods Mol Biol; 2024; 2758():125-150. PubMed ID: 38549012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Endogenous Peptide Pools of Physcomitrella patens Moss.
    Fesenko I; Khazigaleeva R; Govorun V; Ivanov V
    Methods Mol Biol; 2018; 1719():395-405. PubMed ID: 29476527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of iTRAQ Shotgun Proteomics for Measurement of Brain Proteins in Studies of Psychiatric Disorders.
    Núñez EV; Guest PC; Martins-de-Souza D; Domont GB; Nogueira FC
    Adv Exp Med Biol; 2017; 974():219-227. PubMed ID: 28353239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate quantitation of standard peptides used for quantitative proteomics.
    Bordeerat NK; Georgieva NI; Klapper DG; Collins LB; Cross TJ; Borchers CH; Swenberg JA; Boysen G
    Proteomics; 2009 Aug; 9(15):3939-44. PubMed ID: 19637239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).
    Butler GS; Dean RA; Morrison CJ; Overall CM
    Methods Mol Biol; 2010; 622():451-70. PubMed ID: 20135298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origins, Technological Development, and Applications of Peptidomics.
    Schrader M
    Methods Mol Biol; 2018; 1719():3-39. PubMed ID: 29476501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iTRAQ-based shotgun neuroproteomics.
    Liu T; Hu J; Li H
    Methods Mol Biol; 2009; 566():201-16. PubMed ID: 20058174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A strategy for liquid chromatography/tandem mass spectrometry based quantitation of pegylated protein drugs in plasma using plasma protein precipitation with water-miscible organic solvents and subsequent trypsin digestion to generate surrogate peptides for detection.
    Wu ST; Ouyang Z; Olah TV; Jemal M
    Rapid Commun Mass Spectrom; 2011 Jan; 25(2):281-90. PubMed ID: 21192023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues.
    Fricker LD; Lim J; Pan H; Che FY
    Mass Spectrom Rev; 2006; 25(2):327-44. PubMed ID: 16404746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Quantitation of the Developing Cochlea Using Mass Spectrometry.
    Darville LN; Sokolowski BH
    Methods Mol Biol; 2016; 1427():135-48. PubMed ID: 27259925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating endogenous peptides and peptidases using peptidomics.
    Tinoco AD; Saghatelian A
    Biochemistry; 2011 Sep; 50(35):7447-61. PubMed ID: 21786763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical inference from multiple iTRAQ experiments without using common reference standards.
    Herbrich SM; Cole RN; West KP; Schulze K; Yager JD; Groopman JD; Christian P; Wu L; O'Meally RN; May DH; McIntosh MW; Ruczinski I
    J Proteome Res; 2013 Feb; 12(2):594-604. PubMed ID: 23270375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.