These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 29476524)
41. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175 [TBL] [Abstract][Full Text] [Related]
42. Peptidomic Identification of Cysteine-Rich Peptides from Plants. Hemu X; Serra A; Darwis DA; Cornvik T; Sze SK; Tam JP Methods Mol Biol; 2018; 1719():379-393. PubMed ID: 29476526 [TBL] [Abstract][Full Text] [Related]
43. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Gremski LH; Trevisan-Silva D; Ferrer VP; Matsubara FH; Meissner GO; Wille AC; Vuitika L; Dias-Lopes C; Ullah A; de Moraes FR; Chávez-Olórtegui C; Barbaro KC; Murakami MT; Arni RK; Senff-Ribeiro A; Chaim OM; Veiga SS Toxicon; 2014 Jun; 83():91-120. PubMed ID: 24631373 [TBL] [Abstract][Full Text] [Related]
44. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Undheim EA; Sunagar K; Herzig V; Kely L; Low DH; Jackson TN; Jones A; Kurniawan N; King GF; Ali SA; Antunes A; Ruder T; Fry BG Toxins (Basel); 2013 Dec; 5(12):2488-503. PubMed ID: 24351713 [TBL] [Abstract][Full Text] [Related]
46. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga. Estrada-Gómez S; Vargas-Muñoz LJ; Saldarriaga-Córdoba M; Cifuentes Y; Perafan C Toxicon; 2017 Apr; 129():81-88. PubMed ID: 28202363 [TBL] [Abstract][Full Text] [Related]
47. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Jiang L; Zhang D; Zhang Y; Peng L; Chen J; Liang S Comp Biochem Physiol Part D Genomics Proteomics; 2010 Jun; 5(2):81-8. PubMed ID: 20403776 [TBL] [Abstract][Full Text] [Related]
48. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Satake H; Villegas E; Oshiro N; Terada K; Shinada T; Corzo G Toxicon; 2004 Aug; 44(2):149-56. PubMed ID: 15246762 [TBL] [Abstract][Full Text] [Related]
49. Neurotoxins in the venom gland of Calommata signata, a burrowing spider. Han Q; Huang L; Li J; Wang Z; Gao H; Yang Z; Zhou Z; Liu Z Comp Biochem Physiol Part D Genomics Proteomics; 2021 Dec; 40():100871. PubMed ID: 34315107 [TBL] [Abstract][Full Text] [Related]
50. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Zhang F; Liu C; Tan H; Wang H; Jiang Y; Liang S; Zhang F; Liu Z Toxicon; 2015 Dec; 107(Pt B):335-43. PubMed ID: 25963839 [TBL] [Abstract][Full Text] [Related]
51. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Paiva ALB; Mudadu MA; Pereira EHT; Marri CA; Guerra-Duarte C; Diniz MRV Toxicon; 2019 May; 163():59-69. PubMed ID: 30902682 [TBL] [Abstract][Full Text] [Related]
52. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry. Switzar L; Nicolardi S; Rutten JW; Oberstein SA; Aartsma-Rus A; van der Burgt YE J Am Soc Mass Spectrom; 2016 Jan; 27(1):50-8. PubMed ID: 26369777 [TBL] [Abstract][Full Text] [Related]
53. Expression and immunological cross-reactivity of LALP3, a novel astacin-like metalloprotease from brown spider (Loxosceles intermedia) venom. Morgon AM; Belisario-Ferrari MR; Trevisan-Silva D; Meissner GO; Vuitika L; Marin B; Tashima AK; Gremski LH; Gremski W; Senff-Ribeiro A; Veiga SS; Chaim OM Biochimie; 2016; 128-129():8-19. PubMed ID: 27343628 [TBL] [Abstract][Full Text] [Related]
54. [Characterization of spider venom by mass spectrometry, construction of analytical system]. Itagaki Y; Naoki H; Fujita T; Hisada M; Nakajima T Yakugaku Zasshi; 1997 Nov; 117(10-11):715-28. PubMed ID: 9414585 [TBL] [Abstract][Full Text] [Related]
55. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Escoubas P; Sollod B; King GF Toxicon; 2006 May; 47(6):650-63. PubMed ID: 16574177 [TBL] [Abstract][Full Text] [Related]
56. A Comparative Analysis of the Venom Gland Transcriptomes of the Fishing Spiders Dolomedes mizhoanus and Dolomedes sulfurous. Xu X; Wang H; Zhang F; Hu Z; Liang S; Liu Z PLoS One; 2015; 10(10):e0139908. PubMed ID: 26445494 [TBL] [Abstract][Full Text] [Related]
58. Taxonomy of Australian Funnel-web spiders using rp-HPLC/ESI-MS profiling techniques. Wilson D; Alewood PF Toxicon; 2006 May; 47(6):614-27. PubMed ID: 16554080 [TBL] [Abstract][Full Text] [Related]
59. A method combining SPITC and ¹⁸O labeling for simultaneous protein identification and relative quantification. Zhang W; Long J; Zhang C; Cai N; Liu Z; Wang Y; Wang X; Chen P; Liang S J Mass Spectrom; 2014 May; 49(5):400-8. PubMed ID: 24809901 [TBL] [Abstract][Full Text] [Related]
60. Assignment of the three disulfide bridges of huwentoxin-I, a neurotoxin from the spider selenocosmia huwena. Zhang D; Liang S J Protein Chem; 1993 Dec; 12(6):735-40. PubMed ID: 8136023 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]