These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 29476525)
1. Single Cell Peptidomics: Approach for Peptide Identification by N-Terminal Peptide Derivatization. Neupert S Methods Mol Biol; 2018; 1719():369-378. PubMed ID: 29476525 [TBL] [Abstract][Full Text] [Related]
2. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. León IR; Neves-Ferreira AG; Valente RH; Mota EM; Lenzi HL; Perales J J Mass Spectrom; 2007 Oct; 42(10):1363-74. PubMed ID: 17902111 [TBL] [Abstract][Full Text] [Related]
3. Peptidomics of the locust corpora allata: identification of novel pyrokinins (-FXPRLamides). Clynen E; Baggerman G; Huybrechts J; Vanden Bosch L; De Loof A; Schoofs L Peptides; 2003 Oct; 24(10):1493-500. PubMed ID: 14706528 [TBL] [Abstract][Full Text] [Related]
4. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. León IR; Neves-Ferreira AG; Valente RH; Mota EM; Lenzi HL; Perales J J Mass Spectrom; 2007 Jun; 42(6):781-92. PubMed ID: 17511016 [TBL] [Abstract][Full Text] [Related]
5. Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. Neupert S; Fusca D; Schachtner J; Kloppenburg P; Predel R J Comp Neurol; 2012 Mar; 520(4):694-716. PubMed ID: 21826660 [TBL] [Abstract][Full Text] [Related]
6. Peptidomics of identified neurons demonstrates a highly differentiated expression pattern of FXPRLamides in the neuroendocrine system of an insect. Predel R; Eckert M; Pollák E; Molnár L; Scheibner O; Neupert S J Comp Neurol; 2007 Jan; 500(3):498-512. PubMed ID: 17120288 [TBL] [Abstract][Full Text] [Related]
7. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Fricker LD; Lim J; Pan H; Che FY Mass Spectrom Rev; 2006; 25(2):327-44. PubMed ID: 16404746 [TBL] [Abstract][Full Text] [Related]
8. MALDI-TOF mass spectrometry approaches to the characterisation of insect neuropeptides. Weaver RJ; Audsley N Methods Mol Biol; 2010; 615():101-15. PubMed ID: 20013203 [TBL] [Abstract][Full Text] [Related]
9. Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Lee YH; Han H; Chang SB; Lee SW Rapid Commun Mass Spectrom; 2004; 18(24):3019-27. PubMed ID: 15536630 [TBL] [Abstract][Full Text] [Related]
10. Exploring neuropeptide signalling through proteomics and peptidomics. Edwards SL; Mergan L; Parmar B; Cockx B; De Haes W; Temmerman L; Schoofs L Expert Rev Proteomics; 2019 Feb; 16(2):131-137. PubMed ID: 30575424 [TBL] [Abstract][Full Text] [Related]
11. Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons. Neupert S; Schattschneider S; Predel R Peptides; 2009 Mar; 30(3):489-94. PubMed ID: 19071174 [TBL] [Abstract][Full Text] [Related]
12. Identification, Quantitation, and Imaging of the Crustacean Peptidome. DeLaney K; Buchberger A; Li L Methods Mol Biol; 2018; 1719():247-269. PubMed ID: 29476517 [TBL] [Abstract][Full Text] [Related]
13. Comparison between enhanced MALDI in-source decay by ammonium persulfate and N- or C-terminal derivatization methods for detailed peptide structure determination. Horvatić A; Dodig I; Vuletić T; Pavoković D; Hameršak Z; Butorac A; Cindrić M Anal Chem; 2013 Apr; 85(8):3940-7. PubMed ID: 23480173 [TBL] [Abstract][Full Text] [Related]
14. Identification of Peptides in Spider Venom Using Mass Spectrometry. Lomazi RL; Nishiduka ES; Silva PI; Tashima AK Methods Mol Biol; 2018; 1719():359-367. PubMed ID: 29476524 [TBL] [Abstract][Full Text] [Related]
15. Fast and Reliable Quantitative Peptidomics with labelpepmatch. Verdonck R; De Haes W; Cardoen D; Menschaert G; Huhn T; Landuyt B; Baggerman G; Boonen K; Wenseleers T; Schoofs L J Proteome Res; 2016 Mar; 15(3):1080-9. PubMed ID: 26828777 [TBL] [Abstract][Full Text] [Related]
17. De novo sequencing of tryptic peptides sulfonated by 4-sulfophenyl isothiocyanate for unambiguous protein identification using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. Chen P; Nie S; Mi W; Wang XC; Liang SP Rapid Commun Mass Spectrom; 2004; 18(2):191-8. PubMed ID: 14745769 [TBL] [Abstract][Full Text] [Related]
18. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. Caers J; Boonen K; Van Den Abbeele J; Van Rompay L; Schoofs L; Van Hiel MB J Am Soc Mass Spectrom; 2015 Dec; 26(12):2024-38. PubMed ID: 26463237 [TBL] [Abstract][Full Text] [Related]
19. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. Heller M; Mattou H; Menzel C; Yao X J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592 [TBL] [Abstract][Full Text] [Related]
20. On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets. Zhang X; Rogowska-Wrzesinska A; Roepstorff P J Mass Spectrom; 2008 Mar; 43(3):346-59. PubMed ID: 17968850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]