BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29476526)

  • 1. Peptidomic Identification of Cysteine-Rich Peptides from Plants.
    Hemu X; Serra A; Darwis DA; Cornvik T; Sze SK; Tam JP
    Methods Mol Biol; 2018; 1719():379-393. PubMed ID: 29476526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides.
    Serra A; Hemu X; Nguyen GK; Nguyen NT; Sze SK; Tam JP
    Sci Rep; 2016 Mar; 6():23005. PubMed ID: 26965458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis.
    Kalmankar NV; Venkatesan R; Balaram P; Sowdhamini R
    Sci Rep; 2020 Jul; 10(1):12658. PubMed ID: 32728092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidomics of Circular Cysteine-Rich Plant Peptides: Analysis of the Diversity of Cyclotides from Viola tricolor by Transcriptome and Proteome Mining.
    Hellinger R; Koehbach J; Soltis DE; Carpenter EJ; Wong GK; Gruber CW
    J Proteome Res; 2015 Nov; 14(11):4851-62. PubMed ID: 26399495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide-Rich Cyclic Peptides from
    Kalmankar NV; Hari H; Sowdhamini R; Venkatesan R
    J Med Chem; 2021 Jun; 64(11):7422-7433. PubMed ID: 34048659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Peptides in Spider Venom Using Mass Spectrometry.
    Lomazi RL; Nishiduka ES; Silva PI; Tashima AK
    Methods Mol Biol; 2018; 1719():359-367. PubMed ID: 29476524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass Spectrometric Analysis of Cyclotides from Clitoria ternatea: Xxx-Pro Bond Fragmentation as Convenient Diagnostic of Pro Residue Positioning.
    Kalmankar NV; Balaram P; Venkatesan R
    Chem Asian J; 2021 Oct; 16(19):2920-2931. PubMed ID: 34288513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea).
    Nguyen KN; Nguyen GK; Nguyen PQ; Ang KH; Dedon PC; Tam JP
    FEBS J; 2016 Jun; 283(11):2067-90. PubMed ID: 27007913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family.
    Nguyen GK; Zhang S; Nguyen NT; Nguyen PQ; Chiu MS; Hardjojo A; Tam JP
    J Biol Chem; 2011 Jul; 286(27):24275-87. PubMed ID: 21596752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis.
    Zhang J; Li J; Huang Z; Yang B; Zhang X; Li D; Craik DJ; Baker AJ; Shu W; Liao B
    J Plant Physiol; 2015 Apr; 178():17-26. PubMed ID: 25756919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LC-MS/MS identification and structural characterization of isolated cyclotides from precursor sequences of
    Aslam L; Kaur R; Hussain S; Kapoor N; Mahajan R
    J Biosci; 2022; 47():. PubMed ID: 36477022
    [No Abstract]   [Full Text] [Related]  

  • 12. Cationic Clitoria ternatea Seed Peptide as a Potential Novel Bioactive Molecule.
    Sreekala S; Muraleedharan UD
    Protein Pept Lett; 2021; 28(11):1259-1271. PubMed ID: 34551687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass Spectrometric Identification of Endogenous Peptides.
    Azkargorta M; Escobes I; Iloro I; Elortza F
    Methods Mol Biol; 2018; 1719():59-70. PubMed ID: 29476504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Viola cyclotides by liquid chromatography-mass spectrometry and tandem mass spectrometry sequencing of intercysteine loops after introduction of charges and cleavage sites by aminoethylation.
    Göransson U; Broussalis AM; Claeson P
    Anal Biochem; 2003 Jul; 318(1):107-17. PubMed ID: 12782038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the diversity of cyclotides by combining peptidome and transcriptome analysis.
    Koehbach J; Clark RJ
    Biopolymers; 2016 Nov; 106(6):774-783. PubMed ID: 27106857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Cysteine-Rich Peptides from
    Shahin-Kaleybar B; Niazi A; Afsharifar A; Nematzadeh G; Yousefi R; Retzl B; Hellinger R; Muratspahić E; Gruber CW
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32948080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.
    Harris KS; Durek T; Kaas Q; Poth AG; Gilding EK; Conlan BF; Saska I; Daly NL; van der Weerden NL; Craik DJ; Anderson MA
    Nat Commun; 2015 Dec; 6():10199. PubMed ID: 26680698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on activation mechanism and cleavage sites of recombinant butelase-1 zymogen derived from Clitoria ternatea.
    Zhao J; Ge G; Huang Y; Hou Y; Hu SQ
    Biochimie; 2022 Aug; 199():12-22. PubMed ID: 35398151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of Mass Spectrometry-Based Peptidomic Approaches.
    Fricker LD
    J Am Soc Mass Spectrom; 2015 Dec; 26(12):1981-91. PubMed ID: 26305799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclotide isolation and characterization.
    Craik DJ; Henriques ST; Mylne JS; Wang CK
    Methods Enzymol; 2012; 516():37-62. PubMed ID: 23034223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.