BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29476618)

  • 1. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D; Auriol C; Baylac A; Irague R; Dressaire C; Carnicer-Heras M; Heux S; François JM; Walther T
    Microb Cell Fact; 2018 Jul; 17(1):113. PubMed ID: 30012131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.
    Liu J; Xie Z; Shin HD; Li J; Du G; Chen J; Liu L
    J Biotechnol; 2017 Jul; 253():1-9. PubMed ID: 28506930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for the production of L-malate from xylose.
    Li ZJ; Hong PH; Da YY; Li LK; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():25-32. PubMed ID: 29800611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway engineering of Escherichia coli for α-ketoglutaric acid production.
    Chen X; Dong X; Liu J; Luo Q; Liu L
    Biotechnol Bioeng; 2020 Sep; 117(9):2791-2801. PubMed ID: 32530489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli.
    Matos CF; Branston SD; Albiniak A; Dhanoya A; Freedman RB; Keshavarz-Moore E; Robinson C
    Biotechnol Bioeng; 2012 Oct; 109(10):2533-42. PubMed ID: 22539025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct conversion of glucose to malate by synthetic metabolic engineering.
    Ye X; Honda K; Morimoto Y; Okano K; Ohtake H
    J Biotechnol; 2013 Mar; 164(1):34-40. PubMed ID: 23246984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of citramalate by metabolically engineered Escherichia coli.
    Wu X; Eiteman MA
    Biotechnol Bioeng; 2016 Dec; 113(12):2670-2675. PubMed ID: 27316562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.
    Frazão CJR; Topham CM; Malbert Y; François JM; Walther T
    Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.
    Noda S; Shirai T; Oyama S; Kondo A
    Metab Eng; 2016 Jan; 33():119-129. PubMed ID: 26654797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-malate production by metabolically engineered Escherichia coli.
    Zhang X; Wang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2011 Jan; 77(2):427-34. PubMed ID: 21097588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
    Li T; Zhou W; Bi H; Zhuang Y; Zhang T; Liu T
    Biotechnol Lett; 2018 Jul; 40(7):1057-1065. PubMed ID: 29845386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.
    Choi S; Kim HU; Kim TY; Lee SY
    Metab Eng; 2016 Nov; 38():264-273. PubMed ID: 27663752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.