BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29476618)

  • 41. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in
    Soto-Varela ZE; Cabrera G; Romero A; Cantero D; Valle A; Bolivar J
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological production of L-malate: recent advances and future prospects.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    World J Microbiol Biotechnol; 2017 Dec; 34(1):6. PubMed ID: 29214355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved production of adipate with Escherichia coli by reversal of β-oxidation.
    Kallscheuer N; Gätgens J; Lübcke M; Pietruszka J; Bott M; Polen T
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2371-2382. PubMed ID: 27933454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].
    Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. De novo biosynthesis of α-aminoadipate via multi-strategy metabolic engineering in Escherichia coli.
    Zhang Y; Liu M; Cai B; He K; Wang M; Chen B; Tan T
    Microbiologyopen; 2022 Oct; 11(5):e1301. PubMed ID: 36314756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search.
    Kurgan G; Kurgan L; Schneider A; Onyeabor M; Rodriguez-Sanchez Y; Taylor E; Martinez R; Carbonell P; Shi X; Gu H; Wang X
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9001-9011. PubMed ID: 31641813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.
    Song CW; Lee SY
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8455-64. PubMed ID: 26194559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic Engineering of
    Chen Y; Han A; Wang M; Wei D; Wang W
    J Agric Food Chem; 2023 Mar; 71(9):4043-4050. PubMed ID: 36812909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
    Zhang T; Ge C; Deng L; Tan T; Wang F
    FEMS Microbiol Lett; 2015 May; 362(9):. PubMed ID: 25862576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of a synthetic pathway for the production of 1,3-propanediol from glucose.
    Frazão CJR; Trichez D; Serrano-Bataille H; Dagkesamanskaia A; Topham CM; Walther T; François JM
    Sci Rep; 2019 Aug; 9(1):11576. PubMed ID: 31399628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli.
    Kim SK; Park YC
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Improving glycolic acid yield by metabolic engineering in Escherichia coli].
    Ma N; Zhu K; Mao Y; Deng Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):224-234. PubMed ID: 29424136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate.
    Jantama K; Haupt MJ; Svoronos SA; Zhang X; Moore JC; Shanmugam KT; Ingram LO
    Biotechnol Bioeng; 2008 Apr; 99(5):1140-53. PubMed ID: 17972330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineered Bacillus subtilis 168 produces L-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion.
    Mu L; Wen J
    World J Microbiol Biotechnol; 2013 Jan; 29(1):33-41. PubMed ID: 22914898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
    Lee WH; Chin YW; Han NS; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient production of Pseudoionone with multipathway engineering in Escherichia coli.
    Jiang R; Chen X; Lian J; Huang L; Cai J; Xu Z
    J Appl Microbiol; 2019 Jun; 126(6):1751-1760. PubMed ID: 30920693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis.
    Zheng Y; Yuan Q; Yang X; Ma H
    Enzyme Microb Technol; 2017 Nov; 106():60-66. PubMed ID: 28859811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.