BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29476619)

  • 1. Sequential processing with fermentative Caldicellulosiruptor kronotskyensis and chemolithoautotrophic Cupriavidus necator for converting rice straw and CO
    Peng X; Kelly RM; Han Y
    Biotechnol Bioeng; 2018 Jun; 115(6):1624-1629. PubMed ID: 29476619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process.
    Soto LR; Byrne E; van Niel EWJ; Sayed M; Villanueva CC; Hatti-Kaul R
    Bioresour Technol; 2019 Jan; 272():259-266. PubMed ID: 30352368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator.
    Grousseau E; Blanchet E; Déléris S; Albuquerque MG; Paul E; Uribelarrea JL
    Bioresour Technol; 2013 Nov; 148():30-8. PubMed ID: 24035890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO
    Kim S; Jang YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2022 Nov; 21(1):231. PubMed ID: 36335362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production.
    Zhang Y; Wang L; Li T; Shen Y; Luo J
    Int J Biol Macromol; 2020 Oct; 160():446-455. PubMed ID: 32479940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator.
    Obruca S; Benesova P; Oborna J; Marova I
    Biotechnol Lett; 2014 Apr; 36(4):775-81. PubMed ID: 24243232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator.
    Pradella JG; Ienczak JL; Delgado CR; Taciro MK
    Biotechnol Lett; 2012 Jun; 34(6):1003-7. PubMed ID: 22315097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.
    Tanadchangsaeng N; Yu J
    Biotechnol Bioeng; 2012 Nov; 109(11):2808-18. PubMed ID: 22566160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator.
    Azizi N; Najafpour G; Younesi H
    Int J Biol Macromol; 2017 Aug; 101():1029-1040. PubMed ID: 28385521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.
    Saratale GD; Oh MK
    Int J Biol Macromol; 2015 Sep; 80():627-35. PubMed ID: 26206741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator.
    Hafuka A; Sakaida K; Satoh H; Takahashi M; Watanabe Y; Okabe S
    Bioresour Technol; 2011 Feb; 102(3):3551-3. PubMed ID: 20870404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced PHB fermentation strategies with CO
    Vlaeminck E; Quataert K; Uitterhaegen E; De Winter K; Soetaert WK
    J Biotechnol; 2022 Jan; 343():102-109. PubMed ID: 34863773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.
    Neelamegam A; Al-Battashi H; Al-Bahry S; Nallusamy S
    J Biotechnol; 2018 Jan; 265():25-30. PubMed ID: 29113820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Overexpression of Phasin and Regulator Genes Promoting the Synthesis of Polyhydroxybutyrate in Cupriavidus necator H16 under Nonstress Conditions.
    Tang R; Peng X; Weng C; Han Y
    Appl Environ Microbiol; 2022 Jan; 88(2):e0145821. PubMed ID: 34731058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.
    Yu J
    World J Microbiol Biotechnol; 2018 Jun; 34(7):89. PubMed ID: 29886519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: evaluation by CO2 pulse injection and autogenous CO2 methods.
    Shang L; Jiang M; Ryu CH; Chang HN; Cho SH; Lee JW
    Biotechnol Bioeng; 2003 Aug; 83(3):312-20. PubMed ID: 12783487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545.
    Marudkla J; Lee WC; Wannawilai S; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2018 Feb; 268():12-20. PubMed ID: 29329945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).
    Mozumder MS; Goormachtigh L; Garcia-Gonzalez L; De Wever H; Volcke EI
    Bioresour Technol; 2014 Mar; 155():272-80. PubMed ID: 24457311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated batch cultivation of Ralstonia eutropha for Poly (beta-hydroxybutyrate) production.
    Khanna S; Srivastava AK
    Biotechnol Lett; 2005 Sep; 27(18):1401-3. PubMed ID: 16215857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator.
    Obruca S; Marova I; Svoboda Z; Mikulikova R
    Folia Microbiol (Praha); 2010 Jan; 55(1):17-22. PubMed ID: 20336499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.