BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29476820)

  • 1. Testosterone complex and non-steroidal ligands of human aromatase.
    Ghosh D; Egbuta C; Lo J
    J Steroid Biochem Mol Biol; 2018 Jul; 181():11-19. PubMed ID: 29476820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human placental estrogen synthetase (aromatase). Effect of environment on the kinetics of protein-protein and substrate-protein interactions and the production of 19-oxygenated androgen intermediates in the purified reconstituted cytochrome P450 enzyme system.
    Sethumadhavan K; Bellino FL
    J Steroid Biochem Mol Biol; 1991 Sep; 39(3):381-94. PubMed ID: 1911429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for androgen specificity and oestrogen synthesis in human aromatase.
    Ghosh D; Griswold J; Erman M; Pangborn W
    Nature; 2009 Jan; 457(7226):219-23. PubMed ID: 19129847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher order organization of human placental aromatase.
    Ghosh D; Jiang W; Lo J; Egbuta C
    Steroids; 2011 Jul; 76(8):753-8. PubMed ID: 21392520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of intermediates and isotopically sensitive enolization distinguish between aromatase (cytochrome P450 CYP19) from rat ovary and human placenta.
    Swinney DC; Watson DM; So OY
    Arch Biochem Biophys; 1993 Aug; 305(1):61-7. PubMed ID: 8342956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure of human aromatase reveals an androgen-specific active site.
    Ghosh D; Griswold J; Erman M; Pangborn W
    J Steroid Biochem Mol Biol; 2010 Feb; 118(4-5):197-202. PubMed ID: 19808095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for an elevated aspartate pK(a) in the active site of human aromatase.
    Di Nardo G; Breitner M; Bandino A; Ghosh D; Jennings GK; Hackett JC; Gilardi G
    J Biol Chem; 2015 Jan; 290(2):1186-96. PubMed ID: 25425647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the functional roles of critical residues in human cytochrome p450 aromatase.
    Lo J; Di Nardo G; Griswold J; Egbuta C; Jiang W; Gilardi G; Ghosh D
    Biochemistry; 2013 Aug; 52(34):5821-9. PubMed ID: 23899247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in testosterone metabolism associated with the evolution of placental and gonadal isozymes of porcine aromatase cytochrome P450.
    Corbin CJ; Trant JM; Walters KW; Conley AJ
    Endocrinology; 1999 Nov; 140(11):5202-10. PubMed ID: 10537150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion and flexibility in human cytochrome p450 aromatase.
    Jiang W; Ghosh D
    PLoS One; 2012; 7(2):e32565. PubMed ID: 22384274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and functions of human placental aromatase and steroid sulfatase, two key enzymes in estrogen biosynthesis.
    Ghosh D
    Steroids; 2023 Aug; 196():109249. PubMed ID: 37207843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effects of testosterone on intracellular Ca2+ kinetics in rat coronary endothelial cells are exerted via aromatization to estrogens.
    Sierra-Ramírez A; Morato T; Campos R; Rubio I; Calzada C; Méndez E; Ceballos G
    Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H63-71. PubMed ID: 14726302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatization of 15 alpha and 16 alpha hydroxylated androgens in the human placental using [1,2-3H]-substrates.
    Cantineau R; Kremers P; De Graeve J; Gielen JE; Lambotte R
    J Steroid Biochem; 1982 Feb; 16(2):157-63. PubMed ID: 7078154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding features of steroidal and nonsteroidal inhibitors.
    Hong Y; Rashid R; Chen S
    Steroids; 2011 Jul; 76(8):802-6. PubMed ID: 21420422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical characterization of Aptenodytes forsteri cytochrome P450 aromatase.
    Zarate-Perez F; Velázquez-Fernández JB; Jennings GK; Shock LS; Lyons CE; Hackett JC
    J Inorg Biochem; 2018 Jul; 184():79-87. PubMed ID: 29684698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional model of CYP19 aromatase for structure-based drug design.
    Karkola S; Höltje HD; Wähälä K
    J Steroid Biochem Mol Biol; 2007; 105(1-5):63-70. PubMed ID: 17583493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porcine gonadal and placental isozymes of aromatase cytochrome P450: sub-cellular distribution and support by NADPH-cytochrome P450 reductase.
    Corbin CJ; Trant JM; Conley AJ
    Mol Cell Endocrinol; 2001 Feb; 172(1-2):115-24. PubMed ID: 11165045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatase and steroid sulfatase from human placenta.
    Ghosh D
    Methods Enzymol; 2023; 689():67-86. PubMed ID: 37802583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region-specific regulation of cytochrome P450 aromatase messenger ribonucleic acid by androgen in brains of male rhesus monkeys.
    Resko JA; Pereyra-Martinez AC; Stadelman HL; Roselli CE
    Biol Reprod; 2000 Jun; 62(6):1818-22. PubMed ID: 10819787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of functional aromatase in the epididymis: role of androgens and LH in modulation of expression and activity.
    Shayu D; Rao AJ
    Mol Cell Endocrinol; 2006 Apr; 249(1-2):40-50. PubMed ID: 16569475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.