These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29476929)

  • 1. An investigation into the effects of pore connectivity on T
    Ghomeshi S; Kryuchkov S; Kantzas A
    J Magn Reson; 2018 Apr; 289():79-91. PubMed ID: 29476929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore size distributions, pore coupling, and transverse relaxation spectra of porous rocks.
    Kleinberg RL
    Magn Reson Imaging; 1994; 12(2):271-4. PubMed ID: 8170317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments.
    Fleury M; Soualem J
    J Colloid Interface Sci; 2009 Aug; 336(1):250-9. PubMed ID: 19439315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approach to integrate 3D X-ray microtomography and NMR data.
    Lucas-Oliveira E; Araujo-Ferreira AG; Trevizan WA; Fortulan CA; Bonagamba TJ
    J Magn Reson; 2018 Jul; 292():16-24. PubMed ID: 29751275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition.
    Chang D; Ioannidis MA
    J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element approach to forward modeling of nuclear magnetic resonance measurements in coupled pore systems.
    Mitchell J; Souza A; Fordham E; Boyd A
    J Chem Phys; 2019 Apr; 150(15):154708. PubMed ID: 31005119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.
    Gombia M; Bortolotti V; Brown RJ; Camaiti M; Cavallero L; Fantazzini P
    J Phys Chem B; 2009 Aug; 113(31):10580-6. PubMed ID: 19594125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved algorithm for estimating pore size distribution from pore space images of porous media.
    Song S; Ding Q; Wei J
    Phys Rev E; 2019 Nov; 100(5-1):053314. PubMed ID: 31869964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance.
    Ni X; Zhao Z; Wang B; Li Z
    ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnetic pore surface coating on the NMR relaxation and diffusion signal in quartz sand.
    Duschl M; Pohlmeier A; Brox TI; Galvosas P; Vereecken H
    Magn Reson Chem; 2016 Dec; 54(12):975-984. PubMed ID: 27420565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements.
    Luo ZX; Paulsen J; Song YQ
    J Magn Reson; 2015 Oct; 259():146-52. PubMed ID: 26340435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels.
    Kharbanda Y; Urbańczyk M; Laitinen O; Kling K; Pallaspuro S; Komulainen S; Liimatainen H; Telkki VV
    J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(51):30986-30995. PubMed ID: 31983933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially resolved D-T(2) correlation NMR of porous media.
    Zhang Y; Blümich B
    J Magn Reson; 2014 May; 242():41-8. PubMed ID: 24607821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions.
    Costabel S; Yaramanci U
    Water Resour Res; 2013 Apr; 49(4):2068-2079. PubMed ID: 23935225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media.
    Godefroy S; Korb JP; Fleury M; Bryant RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021605. PubMed ID: 11497601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydrophobic treatments of stone on pore water studied by continuous distribution analysis of NMR relaxation times.
    Appolonia L; Borgia GC; Bortolotti V; Brown RJ; Fantazzini P; Rezzaro G
    Magn Reson Imaging; 2001; 19(3-4):509-12. PubMed ID: 11445343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paramagnetic relaxation in sandstones: distinguishing T1 and T2 dependence on surface relaxation, internal gradients and dependence on echo spacing.
    Anand V; Hirasaki GJ
    J Magn Reson; 2008 Jan; 190(1):68-85. PubMed ID: 17981063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field.
    Esmaili M; Shadizadeh SR; Habibnia B; Ghojogh JN; Noruzi-Masir B; Bakhshi P
    Appl Radiat Isot; 2017 Dec; 130():172-187. PubMed ID: 28968589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.