These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29477041)

  • 1. Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment.
    Głombik K; Stachowicz A; Trojan E; Ślusarczyk J; Suski M; Chamera K; Kotarska K; Olszanecki R; Basta-Kaim A
    Pharmacol Rep; 2018 Apr; 70(2):322-330. PubMed ID: 29477041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effectiveness of chronic antidepressant drug treatments in the hippocampal mitochondria - A proteomic study in an animal model of depression.
    Głombik K; Stachowicz A; Trojan E; Olszanecki R; Ślusarczyk J; Suski M; Chamera K; Budziszewska B; Lasoń W; Basta-Kaim A
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Aug; 78():51-60. PubMed ID: 28526399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of insulin receptor phosphorylation in the brains of prenatally stressed rats: New insight into the benefits of antidepressant drug treatment.
    Głombik K; Ślusarczyk J; Trojan E; Chamera K; Budziszewska B; Lasoń W; Basta-Kaim A
    Eur Neuropsychopharmacol; 2017 Feb; 27(2):120-131. PubMed ID: 28063625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression.
    Głombik K; Stachowicz A; Olszanecki R; Ślusarczyk J; Trojan E; Lasoń W; Kubera M; Budziszewska B; Spedding M; Basta-Kaim A
    Mol Neurobiol; 2016 Dec; 53(10):7351-7362. PubMed ID: 26934888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats.
    Głombik K; Stachowicz A; Ślusarczyk J; Trojan E; Budziszewska B; Suski M; Kubera M; Lasoń W; Wędzony K; Olszanecki R; Basta-Kaim A
    Psychoneuroendocrinology; 2015 Oct; 60():151-62. PubMed ID: 26143539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats.
    Itoh T; Tokumura M; Abe K
    Eur J Pharmacol; 2004 Sep; 498(1-3):135-42. PubMed ID: 15363987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats.
    Szymańska M; Budziszewska B; Jaworska-Feil L; Basta-Kaim A; Kubera M; Leśkiewicz M; Regulska M; Lasoń W
    Psychoneuroendocrinology; 2009 Jul; 34(6):822-32. PubMed ID: 19195790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.
    Villa RF; Ferrari F; Gorini A; Brunello N; Tascedda F
    Neuroscience; 2016 Aug; 330():326-34. PubMed ID: 27268280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Beneficial Impact of Antidepressant Drugs on Prenatal Stress-Evoked Malfunction of the Insulin-Like Growth Factor-1 (IGF-1) Protein Family in the Olfactory Bulbs of Adult Rats.
    Trojan E; Głombik K; Ślusarczyk J; Budziszewska B; Kubera M; Roman A; Lasoń W; Basta-Kaim A
    Neurotox Res; 2016 Feb; 29(2):288-98. PubMed ID: 26610812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The decrease in JNK- and p38-MAP kinase activity is accompanied by the enhancement of PP2A phosphate level in the brain of prenatally stressed rats.
    Budziszewska B; Szymanska M; Leskiewicz M; Basta-Kaim A; Jaworska-Feil L; Kubera M; Jantas D; Lason W
    J Physiol Pharmacol; 2010 Apr; 61(2):207-15. PubMed ID: 20436222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower cortical serotonin 2A receptors in major depressive disorder, suicide and in rats after administration of imipramine.
    Dean B; Tawadros N; Seo MS; Jeon WJ; Everall I; Scarr E; Gibbons A
    Int J Neuropsychopharmacol; 2014 Jun; 17(6):895-906. PubMed ID: 24495390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of antidepressant drug exposure on gene expression in the developing cerebral cortex.
    Tsapakis EM; Fernandes C; Moran-Gates T; Basu A; Sugden K; Aitchison KJ; Tarazi FI
    Synapse; 2014 May; 68(5):209-20. PubMed ID: 24458505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of mitochondrial aldehyde dehydrogenase (ALDH2) activation by Alda-1 on the behavioral and biochemical disturbances in animal model of depression.
    Stachowicz A; Głombik K; Olszanecki R; Basta-Kaim A; Suski M; Lasoń W; Korbut R
    Brain Behav Immun; 2016 Jan; 51():144-153. PubMed ID: 26254233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams.
    Gemmel M; Rayen I; van Donkelaar E; Loftus T; Steinbusch HW; Kokras N; Dalla C; Pawluski JL
    Neuroscience; 2016 Jul; 327():32-43. PubMed ID: 27060483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of chronic antidepressant treatment on swim stress- and fluoxetine-induced secretion of corticosterone and progesterone.
    Duncan GE; Knapp DJ; Carson SW; Breese GR
    J Pharmacol Exp Ther; 1998 May; 285(2):579-87. PubMed ID: 9580601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pramipexole but not imipramine or fluoxetine reverses the "depressive-like" behaviour in a rat model of preclinical stages of Parkinson's disease.
    Berghauzen-Maciejewska K; Kuter K; Kolasiewicz W; Głowacka U; Dziubina A; Ossowska K; Wardas J
    Behav Brain Res; 2014 Sep; 271():343-53. PubMed ID: 24956561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action.
    Perić I; Costina V; Stanisavljević A; Findeisen P; Filipović D
    Neuropharmacology; 2018 Jun; 135():268-283. PubMed ID: 29596899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine - Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression.
    Trojan E; Ślusarczyk J; Chamera K; Kotarska K; Głombik K; Kubera M; Basta-Kaim A
    Front Pharmacol; 2017; 8():779. PubMed ID: 29163165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists.
    Carboni L; Vighini M; Piubelli C; Castelletti L; Milli A; Domenici E
    Eur Neuropsychopharmacol; 2006 Oct; 16(7):521-37. PubMed ID: 16517129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex.
    Morinobu S; Nibuya M; Duman RS
    Neuropsychopharmacology; 1995 May; 12(3):221-8. PubMed ID: 7612155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.