These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29477049)

  • 41. Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia.
    Telahigue F; Agoubi B; Souid F; Kharroubi A
    J Environ Radioact; 2018 Feb; 182():74-84. PubMed ID: 29202372
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia).
    Atkins ML; Santos IR; Perkins A; Maher DT
    J Environ Radioact; 2016 Apr; 154():83-92. PubMed ID: 26867097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ground-water radon anomaly before the kobe earthquake in Japan.
    Igarashi G; Saeki S; Takahata N; Sumikawa K; Tasaka S; Sasaki Y; Takahashi M; Sano Y
    Science; 1995 Jul; 269(5220):60-1. PubMed ID: 17787704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The LVD signals during the early-mid stages of the L'Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude.
    Cigolini C; Laiolo M; Coppola D
    J Environ Radioact; 2015 Jan; 139():56-65. PubMed ID: 25464041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of geophysical and meteorological parameters influencing
    Ambrosino F; Thinová L; Briestenský M; Giudicepietro F; Roca V; Sabbarese C
    Appl Radiat Isot; 2020 Jun; 160():109140. PubMed ID: 32351231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Field study of using naturally occurring radon to assess the dense non-aqueous phase liquid distribution in saturated zone.
    Chen YT; Tung TH; Wang LC; Lu CJ
    J Environ Radioact; 2014 Feb; 128():75-83. PubMed ID: 24316686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan.
    Sano Y; Takahata N; Kagoshima T; Shibata T; Onoue T; Zhao D
    Sci Rep; 2016 Nov; 6():37939. PubMed ID: 27897212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Occurrence of radon in groundwater of Saudi Arabia.
    Alabdula'aly AI
    J Environ Radioact; 2014 Dec; 138():186-91. PubMed ID: 25244698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of the relationships between seismic activities and radon level in western Turkey.
    Tarakçı M; Harmanşah C; Saç MM; İçhedef M
    Appl Radiat Isot; 2014 Jan; 83 Pt A():12-7. PubMed ID: 24215813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary).
    Freiler Á; Horváth Á; Török K; Földes T
    J Environ Radioact; 2016 Jan; 151 Pt 1():174-184. PubMed ID: 26476411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Effect of Catalogue Lead Time on Medium-Term Earthquake Forecasting with Application to New Zealand Data.
    Rhoades DA; J Rastin S; Christophersen A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anomalous variations of VLF sub-ionospheric signal and Mesospheric Ozone prior to 2015 Gorkha Nepal Earthquake.
    Phanikumar DV; Maurya AK; Kumar KN; Venkatesham K; Singh R; Sharma S; Naja M
    Sci Rep; 2018 Jun; 8(1):9381. PubMed ID: 29925887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector.
    Rani A; Mehra R; Duggal V
    Radiat Prot Dosimetry; 2013; 153(4):496-501. PubMed ID: 22826356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Streamflow and water well responses to earthquakes.
    Montgomery DR; Manga M
    Science; 2003 Jun; 300(5628):2047-9. PubMed ID: 12829774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Initiation process of earthquakes and its implications for seismic hazard reduction strategy.
    Kanamori H
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3726-31. PubMed ID: 11607657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.
    Onda S; Sano Y; Takahata N; Kagoshima T; Miyajima T; Shibata T; Pinti DL; Lan T; Kim NK; Kusakabe M; Nishio Y
    Sci Rep; 2018 Mar; 8(1):4800. PubMed ID: 29555988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variations in radon concentration in groundwater of Kumaon Himalaya, India.
    Bourai AA; Gusain GS; Rautela BS; Joshi V; Prasad G; Ramola RC
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):55-7. PubMed ID: 22914330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission.
    Kumar A; Singh S; Mahajan S; Bajwa BS; Kalia R; Dhar S
    Appl Radiat Isot; 2009 Oct; 67(10):1904-11. PubMed ID: 19546007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Submarine groundwater discharge from the South Australian Limestone Coast region estimated using radium and salinity.
    Lamontagne S; Taylor AR; Herpich D; Hancock GJ
    J Environ Radioact; 2015 Feb; 140():30-41. PubMed ID: 25461513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.