BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

831 related articles for article (PubMed ID: 29477461)

  • 1. Practice makes better - Learning effects of driving with a multi-stage collision warning.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():398-409. PubMed ID: 29477461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to warn drivers in various safety-critical situations - Different strategies, different reactions.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():410-426. PubMed ID: 29703596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.
    Lubbe N
    J Safety Res; 2017 Jun; 61():23-32. PubMed ID: 28454868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do drivers avoid collisions? A driving simulator-based study.
    Li X; Rakotonirainy A; Yan X
    J Safety Res; 2019 Sep; 70():89-96. PubMed ID: 31848013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive forward collision warnings: The impact of imperfect technology on behavioral adaptation, warning effectiveness and acceptance.
    Reinmueller K; Steinhauser M
    Accid Anal Prev; 2019 Jul; 128():217-229. PubMed ID: 31063907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward collision warning based on a driver model to increase drivers' acceptance.
    Puente Guillen P; Gohl I
    Traffic Inj Prev; 2019; 20(sup1):S21-S26. PubMed ID: 31381428
    [No Abstract]   [Full Text] [Related]  

  • 9. Towards an assistance strategy that reduces unnecessary collision alarms: An examination of the driver's perceived need for assistance.
    Kaß C; Schmidt GJ; Kunde W
    J Exp Psychol Appl; 2019 Jun; 25(2):291-302. PubMed ID: 30035557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does a collision warning system shape driver's brake response time? The influence of expectancy and automation complacency on real-life emergency braking.
    Ruscio D; Ciceri MR; Biassoni F
    Accid Anal Prev; 2015 Apr; 77():72-81. PubMed ID: 25700125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving with a partially autonomous forward collision warning system: how do drivers react?
    Muhrer E; Reinprecht K; Vollrath M
    Hum Factors; 2012 Oct; 54(5):698-708. PubMed ID: 23156616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.
    Cicchino JB; McCartt AT
    Traffic Inj Prev; 2015; 16():298-303. PubMed ID: 24983299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of warning characteristics on driver behavior in connected vehicles systems with missed warnings.
    Zhang Y; Wu C; Qiao C; Hou Y
    Accid Anal Prev; 2019 Mar; 124():138-145. PubMed ID: 30639686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving.
    Scott JJ; Gray R
    Hum Factors; 2008 Apr; 50(2):264-75. PubMed ID: 18516837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What happens when drivers of automated vehicles take over control in critical brake situations?
    Roche F; Thüring M; Trukenbrod AK
    Accid Anal Prev; 2020 Sep; 144():105588. PubMed ID: 32531374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator.
    Lee JD; McGehee DV; Brown TL; Reyes ML
    Hum Factors; 2002; 44(2):314-34. PubMed ID: 12452276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cooperative systems on driver behavior in heavy fog condition based on a driving simulator.
    Chang X; Li H; Qin L; Rong J; Lu Y; Chen X
    Accid Anal Prev; 2019 Jul; 128():197-205. PubMed ID: 31054492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does intersection field of view influence driving safety in an emergent situation?
    Yan X; Zhang X; Xue Q
    Accid Anal Prev; 2018 Oct; 119():162-175. PubMed ID: 30036817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vehicle warnings for work zone and related rear-end collisions: A driving simulator experiment.
    Hang J; Yan X; Li X; Duan K
    Accid Anal Prev; 2022 Sep; 174():106768. PubMed ID: 35820314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.