BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29477858)

  • 1. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio.
    Liang F; Englund E; Lindberg P; Lindblad P
    Metab Eng; 2018 Mar; 46():51-59. PubMed ID: 29477858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production.
    Roussou S; Albergati A; Liang F; Lindblad P
    Metab Eng Commun; 2021 Jun; 12():e00161. PubMed ID: 33520653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.
    Liang F; Lindblad P
    Metab Eng; 2016 Nov; 38():56-64. PubMed ID: 27328433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803.
    Yu King Hing N; Liang F; Lindblad P; Morgan JA
    Metab Eng; 2019 Dec; 56():77-84. PubMed ID: 31470115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002.
    De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y
    Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.
    Ehira S; Takeuchi T; Higo A
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1523-1531. PubMed ID: 29143082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-Inlet Mass Spectrometry Enables a Quantitative Understanding of Inorganic Carbon Uptake Flux and Carbon Concentrating Mechanisms in Metabolically Engineered Cyanobacteria.
    Douchi D; Liang F; Cano M; Xiong W; Wang B; Maness PC; Lindblad P; Yu J
    Front Microbiol; 2019; 10():1356. PubMed ID: 31293533
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Quinn L; Armshaw P; Soulimane T; Sheehan C; Ryan MP; Pembroke JT
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31717863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli.
    Tseng IT; Chen YL; Chen CH; Shen ZX; Yang CH; Li SY
    Metab Eng; 2018 May; 47():445-452. PubMed ID: 29704653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewiring carbon flow in
    Gao EB; Wu J; Ye P; Qiu H; Chen H; Fang Z
    Front Microbiol; 2023; 14():1211004. PubMed ID: 37323905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast metabolic engineering for carbon dioxide fixation and its application.
    Rin Kim S; Kim SJ; Kim SK; Seo SO; Park S; Shin J; Kim JS; Park BR; Jin YS; Chang PS; Park YC
    Bioresour Technol; 2022 Feb; 346():126349. PubMed ID: 34800639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanol-free biosynthesis of fatty acid methyl ester (FAME) in Synechocystis sp. PCC 6803.
    Yunus IS; Palma A; Trudeau DL; Tawfik DS; Jones PR
    Metab Eng; 2020 Jan; 57():217-227. PubMed ID: 31821864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants.
    Tamoi M; Nagaoka M; Miyagawa Y; Shigeoka S
    Plant Cell Physiol; 2006 Mar; 47(3):380-90. PubMed ID: 16415064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.
    Xiong W; Lee TC; Rommelfanger S; Gjersing E; Cano M; Maness PC; Ghirardi M; Yu J
    Nat Plants; 2015 Dec; 2():15187. PubMed ID: 27250745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO
    Simkin AJ; Lopez-Calcagno PE; Davey PA; Headland LR; Lawson T; Timm S; Bauwe H; Raines CA
    Plant Biotechnol J; 2017 Jul; 15(7):805-816. PubMed ID: 27936496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico strategies to couple production of bioethanol with growth in cyanobacteria.
    Lasry Testa R; Delpino C; Estrada V; Diaz SM
    Biotechnol Bioeng; 2019 Aug; 116(8):2061-2073. PubMed ID: 31034583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biochemical characterization of fructose-1,6/sedoheptulose-1,7-bisphosphatase from the cyanobacterium Synechocystis strain 6803.
    Feng L; Sun Y; Deng H; Li D; Wan J; Wang X; Wang W; Liao X; Ren Y; Hu X
    FEBS J; 2014 Feb; 281(3):916-26. PubMed ID: 24286336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel variant of the Calvin-Benson cycle bypassing fructose bisphosphate.
    Ohta J
    Sci Rep; 2022 Mar; 12(1):3984. PubMed ID: 35296702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.