These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29478101)

  • 1. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response.
    Psikuta A; Mert E; Annaheim S; Rossi RM
    Int J Biometeorol; 2018 Jul; 62(7):1121-1134. PubMed ID: 29478101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions.
    Veselá S; Psikuta A; Frijns AJH
    Int J Biometeorol; 2018 Dec; 62(12):2215-2229. PubMed ID: 30374599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of garment fit and style to thermal comfort at the lower body.
    Mert E; Böhnisch S; Psikuta A; Bueno MA; Rossi RM
    Int J Biometeorol; 2016 Dec; 60(12):1995-2004. PubMed ID: 27757698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of body postures on the distribution of air gap thickness and contact area.
    Mert E; Psikuta A; Bueno MA; Rossi RM
    Int J Biometeorol; 2017 Feb; 61(2):363-375. PubMed ID: 27522664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.
    Lu Y; Wang F; Wan X; Song G; Zhang C; Shi W
    Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.
    Psikuta A; Koelblen B; Mert E; Fontana P; Annaheim S
    Ind Health; 2017 Dec; 55(6):500-512. PubMed ID: 28966294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y; Wang F; Wan X; Song G; Shi W; Zhang C
    Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.
    Psikuta A; Kuklane K; Bogdan A; Havenith G; Annaheim S; Rossi RM
    Int J Biometeorol; 2016 Mar; 60(3):435-46. PubMed ID: 26219607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the Stolwijk model with regard to clothing, thermal sensation and skin temperature.
    Roelofsen P; Vink P
    Work; 2016 Jul; 54(4):1009-24. PubMed ID: 27447419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins.
    Al-ajmi FF; Loveday DL; Bedwell KH; Havenith G
    Appl Ergon; 2008 May; 39(3):407-14. PubMed ID: 18045571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal sensation models: a systematic comparison.
    Koelblen B; Psikuta A; Bogdan A; Annaheim S; Rossi RM
    Indoor Air; 2017 May; 27(3):680-689. PubMed ID: 27564215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clothing air gaps in various postures in firefighters' work.
    Psikuta A; Sherif F; Mert E; Mandal S; Annaheim S
    Int J Biometeorol; 2023 Jan; 67(1):121-131. PubMed ID: 36323952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.
    Wang F; Peng H; Shi W
    Appl Ergon; 2016 Sep; 56():194-202. PubMed ID: 27184328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Artificial Neural Network Modeling to Analyze the Thermal Protective and Thermo-Physiological Comfort Performance of Textile Fabrics Used in Oilfield Workers' Clothing.
    Mandal S; Mazumder NU; Agnew RJ; Grover IB; Song G; Li R
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34208824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local thermal sensation modeling-a review on the necessity and availability of local clothing properties and local metabolic heat production.
    Veselá S; Kingma BR; Frijns AJ
    Indoor Air; 2017 Mar; 27(2):261-272. PubMed ID: 27485255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods.
    Oliveira AV; Gaspar AR; Quintela DA
    Eur J Appl Physiol; 2008 Nov; 104(4):679-88. PubMed ID: 18633635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China.
    Jiao Y; Yu H; Wang T; An Y; Yu Y
    J Therm Biol; 2017 Dec; 70(Pt A):28-36. PubMed ID: 29074023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.
    Lu Y; Song G; Li J
    Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and prediction of indoor air quality using a breathing thermal manikin.
    Melikov A; Kaczmarczyk J
    Indoor Air; 2007 Feb; 17(1):50-9. PubMed ID: 17257152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.