BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29478168)

  • 1. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).
    Chen WY; Lin HC
    Environ Sci Pollut Res Int; 2018 May; 25(13):12947-12956. PubMed ID: 29478168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile.
    Dorey N; Butera E; Espinel-Velasco N; Dupont S
    Sci Rep; 2022 Apr; 12(1):5557. PubMed ID: 35365731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of CO
    Zhan Y; Hu W; Zhang W; Liu M; Duan L; Huang X; Chang Y; Li C
    Mar Pollut Bull; 2016 Nov; 112(1-2):291-302. PubMed ID: 27522173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE; Hofmann GE
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
    Dorey N; Lançon P; Thorndyke M; Dupont S
    Glob Chang Biol; 2013 Nov; 19(11):3355-67. PubMed ID: 23744556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO
    Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification reduced growth rate but not swimming speed of larval sea urchins.
    Chan KY; García E; Dupont S
    Sci Rep; 2015 May; 5():9764. PubMed ID: 25978405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus.
    Lenz B; Fogarty ND; Figueiredo J
    Mar Pollut Bull; 2019 Apr; 141():70-78. PubMed ID: 30955782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolome analysis provides new insights into increased larval mortality under seawater acidification in the sea urchin Strongylocentrotus intermedius.
    Li Y; Yin W; Zhan Y; Jia Y; Cui D; Zhang W; Chang Y
    Sci Total Environ; 2020 Dec; 747():141206. PubMed ID: 32777501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG; Padilla-Gamiño JL; Kelly MW; Pespeni MH; Chan F; Menge BA; Gaylord B; Hill TM; Russell AD; Palumbi SR; Sanford E; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():33-42. PubMed ID: 25773301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seagrass meadows as ocean acidification refugia for sea urchin larvae.
    Ravaglioli C; De Marchi L; Giannessi J; Pretti C; Bulleri F
    Sci Total Environ; 2024 Jan; 906():167465. PubMed ID: 37778543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic.
    Evans TG; Pespeni MH; Hofmann GE; Palumbi SR; Sanford E
    Mol Ecol; 2017 Apr; 26(8):2257-2275. PubMed ID: 28141889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M; Dupont S; Thorndyke MC; Melzner F
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development.
    Bertucci JI; Juez A; Bellas J
    Chemosphere; 2022 Aug; 301():134783. PubMed ID: 35504467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification.
    Gianguzza P; Visconti G; Gianguzza F; Vizzini S; Sarà G; Dupont S
    Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Zhan Y; Cui D; Xing D; Zhang J; Zhang W; Li Y; Li C; Chang Y
    Mar Pollut Bull; 2020 Apr; 153():110944. PubMed ID: 32056852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW; Padilla-Gamiño JL; Hofmann GE
    Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG; Chan F; Menge BA; Hofmann GE
    Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.