These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29478372)

  • 1. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys.
    Nagahara R; Takai Y; Haramura M; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    Pediatr Exerc Sci; 2018 Aug; 30(3):335-344. PubMed ID: 29478372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Sports Sci; 2018 Jun; 36(12):1392-1401. PubMed ID: 28988513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related differences in kinematics and kinetics of sprinting in young female.
    Nagahara R; Haramura M; Takai Y; Oliver JL; Wichitaksorn N; Sommerfield LM; Cronin JB
    Scand J Med Sci Sports; 2019 Jun; 29(6):800-807. PubMed ID: 30697820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting.
    Nagahara R; Girard O
    Scand J Med Sci Sports; 2021 Mar; 31(3):586-596. PubMed ID: 33217086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of Step Width with Accelerated Sprinting Performance and Ground Reaction Force.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    Int J Sports Med; 2017 Jul; 38(7):534-540. PubMed ID: 28482364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normative spatiotemporal and ground reaction force data for female and male sprinting.
    Nagahara R
    J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of duration and magnitude of force application to sprint performance during the initial acceleration, transition and maximal velocity phases.
    von Lieres Und Wilkau HC; Bezodis NE; Morin JB; Irwin G; Simpson S; Bezodis IN
    J Sports Sci; 2020 Oct; 38(20):2359-2366. PubMed ID: 32627681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and kinematic determinants of female sprint performance.
    Gleadhill S; Nagahara R
    J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetries of kinematics and kinetics in female and male sprinting.
    Nagahara R; Gleadhill S
    J Sports Med Phys Fitness; 2023 Aug; 63(8):891-898. PubMed ID: 37166253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are peak ground reaction forces related to better sprint acceleration performance?
    Nagahara R; Kanehisa H; Matsuo A; Fukunaga T
    Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Insights Into Differences Between the Mid-Acceleration and Maximum Velocity Phases of Sprinting.
    Yu J; Sun Y; Yang C; Wang D; Yin K; Herzog W; Liu Y
    J Strength Cond Res; 2016 Jul; 30(7):1906-16. PubMed ID: 27331914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of acceleration with spatiotemporal variables in maximal sprinting.
    Nagahara R; Naito H; Morin JB; Zushi K
    Int J Sports Med; 2014 Aug; 35(9):755-61. PubMed ID: 24577864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of the Spatiotemporal Determinants of Maximal Sprint Speed in Adolescent Boys Over Single and Multiple Steps.
    Meyers RW; Oliver JL; Hughes MG; Lloyd RS; Cronin J
    Pediatr Exerc Sci; 2015 Aug; 27(3):419-26. PubMed ID: 25970549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of forearm wearable resistance on acceleration mechanics in collegiate track sprinters.
    Uthoff AM; Nagahara R; Macadam P; Neville J; Tinwala F; Graham SP; Cronin JB
    Eur J Sport Sci; 2020 Nov; 20(10):1346-1354. PubMed ID: 31973687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase analysis in maximal sprinting: an investigation of step-to-step technical changes between the initial acceleration, transition and maximal velocity phases.
    von Lieres Und Wilkau HC; Irwin G; Bezodis NE; Simpson S; Bezodis IN
    Sports Biomech; 2020 Apr; 19(2):141-156. PubMed ID: 29972337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-Velocity-Power Profiling During Weighted-Vest Sprinting in Soccer.
    Carlos-Vivas J; Marín-Cascales E; Freitas TT; Perez-Gomez J; Alcaraz PE
    Int J Sports Physiol Perform; 2019 Jul; 14(6):747–756. PubMed ID: 30427229
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of a six-week multimodal training programme on the sprinting ability of adolescent rugby sevens players.
    Sastre-Munar A; Jiménez-Reyes P; Romero-Franco N
    J Sports Sci; 2023 Jun; 41(10):990-998. PubMed ID: 37712360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.