These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29478385)

  • 21. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions.
    Sheehy EJ; Buckley CT; Kelly DJ
    J Tissue Eng Regen Med; 2011 Oct; 5(9):747-58. PubMed ID: 21953872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering.
    Hsu SH; Huang TB; Cheng SJ; Weng SY; Tsai CL; Tseng CS; Chen DC; Liu TY; Fu KY; Yen BL
    Tissue Eng Part A; 2011 Jun; 17(11-12):1549-60. PubMed ID: 21284540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells.
    Chong PP; Selvaratnam L; Abbas AA; Kamarul T
    J Orthop Res; 2012 Apr; 30(4):634-42. PubMed ID: 21922534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture.
    Farrell MJ; Fisher MB; Huang AH; Shin JI; Farrell KM; Mauck RL
    J Biomech; 2014 Jun; 47(9):2173-82. PubMed ID: 24239005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo.
    Ng J; Wei Y; Zhou B; Burapachaisri A; Guo E; Vunjak-Novakovic G
    Stem Cell Res Ther; 2016 Dec; 7(1):183. PubMed ID: 27931263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.
    Nakagawa Y; Muneta T; Otabe K; Ozeki N; Mizuno M; Udo M; Saito R; Yanagisawa K; Ichinose S; Koga H; Tsuji K; Sekiya I
    PLoS One; 2016; 11(2):e0148777. PubMed ID: 26867127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy.
    Desancé M; Contentin R; Bertoni L; Gomez-Leduc T; Branly T; Jacquet S; Betsch JM; Batho A; Legendre F; Audigié F; Galéra P; Demoor M
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.
    Co C; Vickaryous MK; Koch TG
    Osteoarthritis Cartilage; 2014 Mar; 22(3):472-80. PubMed ID: 24418676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.
    Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C
    Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index.
    Branly T; Contentin R; Desancé M; Jacquel T; Bertoni L; Jacquet S; Mallein-Gerin F; Denoix JM; Audigié F; Demoor M; Galéra P
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential Production of Cartilage ECM in 3D Agarose Constructs by Equine Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells.
    Schmidt S; Abinzano F; Mensinga A; Teßmar J; Groll J; Malda J; Levato R; Blunk T
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Therapeutic Effects of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Combined with Cartilage Acellular Matrix Mediated Via Bone Morphogenic Protein 6 in a Rabbit Model of Articular Cruciate Ligament Transection.
    Jeon HJ; Yoon KA; An ES; Kang TW; Sim YB; Ahn J; Choi EK; Lee S; Seo KW; Kim YB; Kang KS
    Stem Cell Rev Rep; 2020 Jun; 16(3):596-611. PubMed ID: 32112264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.
    Rebelatto CK; Aguiar AM; Moretão MP; Senegaglia AC; Hansen P; Barchiki F; Oliveira J; Martins J; Kuligovski C; Mansur F; Christofis A; Amaral VF; Brofman PS; Goldenberg S; Nakao LS; Correa A
    Exp Biol Med (Maywood); 2008 Jul; 233(7):901-13. PubMed ID: 18445775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.
    Vidal MA; Robinson SO; Lopez MJ; Paulsen DB; Borkhsenious O; Johnson JR; Moore RM; Gimble JM
    Vet Surg; 2008 Dec; 37(8):713-24. PubMed ID: 19121166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2.
    Zhao L; Li G; Chan KM; Wang Y; Tang PF
    Calcif Tissue Int; 2009 Jan; 84(1):56-64. PubMed ID: 19052794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue.
    Zhang X; Hirai M; Cantero S; Ciubotariu R; Dobrila L; Hirsh A; Igura K; Satoh H; Yokomi I; Nishimura T; Yamaguchi S; Yoshimura K; Rubinstein P; Takahashi TA
    J Cell Biochem; 2011 Apr; 112(4):1206-18. PubMed ID: 21312238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equine Cord Blood Mesenchymal Stromal Cells Have Greater Differentiation and Similar Immunosuppressive Potential to Cord Tissue Mesenchymal Stromal Cells.
    Lepage SIM; Lee OJ; Koch TG
    Stem Cells Dev; 2019 Feb; 28(3):227-237. PubMed ID: 30484372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.
    Fahy N; Alini M; Stoddart MJ
    J Orthop Res; 2018 Jan; 36(1):52-63. PubMed ID: 28763118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.