BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 29478388)

  • 1. Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells.
    Li R; Yu G; Azarin SM; Hubel A
    Tissue Eng Part C Methods; 2018 May; 24(5):289-299. PubMed ID: 29478388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes.
    Trad FS; Toner M; Biggers JD
    Hum Reprod; 1999 Jun; 14(6):1569-77. PubMed ID: 10357978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.
    Yu G; Yap YR; Pollock K; Hubel A
    Biophys J; 2017 Jun; 112(12):2653-2663. PubMed ID: 28636921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():217-221. PubMed ID: 33031823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of Human iPS Cell Aggregates in a DMSO-Free Solution-An Optimization and Comparative Study.
    Li R; Hornberger K; Dutton JR; Hubel A
    Front Bioeng Biotechnol; 2020; 8():1. PubMed ID: 32039188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Cryopreservation of Peripheral Blood Stem Cell Harvest Using Low Concentration (4.35%) Dimethyl Sulfoxide with Methyl Cellulose and Uncontrolled Rate Freezing at -80 °C: An Effective Option in Resource-Limited Settings.
    Gokarn A; Tembhare PR; Syed H; Sanyal I; Kumar R; Parab S; Khanka T; Punatar S; Kedia S; Ghogale SG; Deshpande N; Nikam Y; Girase K; Mirgh S; Jindal N; Bagal B; Chichra A; Nayak L; Bonda A; Rath S; Hiregoudar S; Poojary M; Saha S; Ojha S; Subramanian PG; Khattry N
    Transplant Cell Ther; 2023 Dec; 29(12):777.e1-777.e8. PubMed ID: 37678607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of supercooling and cell volume on intracellular ice formation.
    Prickett RC; Marquez-Curtis LA; Elliott JA; McGann LE
    Cryobiology; 2015 Apr; 70(2):156-63. PubMed ID: 25707695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide.
    Karlsson JO; Cravalho EG; Borel Rinkes IH; Tompkins RG; Yarmush ML; Toner M
    Biophys J; 1993 Dec; 65(6):2524-36. PubMed ID: 8312489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of intracellular/extracellular dimethyl sulfoxide concentrations during freezing with low-temperature confocal Raman micro-spectroscopy.
    Zhan T; Niu W; Cui M; Han H; Wang D; Xu Y
    Analyst; 2022 Dec; 148(1):47-60. PubMed ID: 36367051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video analysis of osmotic cell response during cryopreservation.
    Spindler R; Rosenhahn B; Hofmann N; Glasmacher B
    Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic factor optimization for cryopreservation of shipped sperm samples of diploid Pacific Oysters, Crassostrea gigas.
    Dong Q; Huang C; Eudeline B; Tiersch TR
    Cryobiology; 2005 Oct; 51(2):176-97. PubMed ID: 16126190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.