These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 29478411)

  • 1. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of single-cell RNA-seq data using Tweedie models.
    Mallick H; Chatterjee S; Chowdhury S; Chatterjee S; Rahnavard A; Hicks SC
    Stat Med; 2022 Aug; 41(18):3492-3510. PubMed ID: 35656596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.
    Das S; Rai SN
    Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Subpopulations of Cells in Single-Cell Transcriptomic Data: A Bayesian Mixture Modeling Approach to Zero Inflation of Counts.
    Wilson T; Vo DHT; Thorne T
    J Comput Biol; 2023 Oct; 30(10):1059-1074. PubMed ID: 37871291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics.
    Choi K; Chen Y; Skelly DA; Churchill GA
    Genome Biol; 2020 Jul; 21(1):183. PubMed ID: 32718323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering single-cell eQTLs from scRNA-seq data only.
    Ma T; Li H; Zhang X
    Gene; 2022 Jun; 829():146520. PubMed ID: 35452708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive assessment of hurdle and zero-inflated models for single cell RNA-sequencing analysis.
    Cui T; Wang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.
    You Y; Prawer YDJ; De Paoli-Iseppi R; Hunt CPJ; Parish CL; Shim H; Clark MB
    Genome Biol; 2023 Apr; 24(1):66. PubMed ID: 37024980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Differentially Expressed Genes of Zero Inflated Single Cell RNA Sequencing Data Using Mixed Model Score Tests.
    He Z; Pan Y; Shao F; Wang H
    Front Genet; 2021; 12():616686. PubMed ID: 33613638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.
    Chafamo D; Shanmugam V; Tokcan N
    BMC Bioinformatics; 2024 Oct; 25(1):323. PubMed ID: 39369208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects.
    Liu Y; Zhao J; Adams TS; Wang N; Schupp JC; Wu W; McDonough JE; Chupp GL; Kaminski N; Wang Z; Yan X
    BMC Bioinformatics; 2023 Aug; 24(1):318. PubMed ID: 37608264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.
    Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.