These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29478520)
41. Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. Sun J; Li X; Xu X; Zhou G J Food Sci; 2011 Apr; 76(3):C472-8. PubMed ID: 21535816 [TBL] [Abstract][Full Text] [Related]
42. Improving the texture attributes of squid meat (sthenoteuthis oualaniensis) with slight oxidative and phosphate curing treatments. Wang J; Xu Z; Lu W; Zhou X; Liu S; Zhu S; Ding Y Food Res Int; 2024 Jan; 176():113829. PubMed ID: 38163726 [TBL] [Abstract][Full Text] [Related]
43. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation. Chen L; Li C; Ullah N; Guo Y; Sun X; Wang X; Xu X; Hackman RM; Zhou G; Feng X Meat Sci; 2016 Nov; 121():228-237. PubMed ID: 27348321 [TBL] [Abstract][Full Text] [Related]
44. Low-frequency alternating magnetic field and CaCl Zhao S; Liu Y; Yang L; Zhao Y; Zhu M; Wang H; Kang Z; Ma H Food Chem X; 2024 Jun; 22():101341. PubMed ID: 38586222 [TBL] [Abstract][Full Text] [Related]
45. Effects of gamma ray irradiation-induced protein hydrolysis and oxidation on tenderness change of fresh pork during storage. Zhang M; He L; Li C; Yang F; Zhao S; Liang Y; Jin G Meat Sci; 2020 May; 163():108058. PubMed ID: 31954334 [TBL] [Abstract][Full Text] [Related]
46. Effects of (-)-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein-soybean oil emulsions. Cao Y; Ai N; True AD; Xiong YL Food Chem; 2018 Apr; 245():439-445. PubMed ID: 29287393 [TBL] [Abstract][Full Text] [Related]
47. Effects of oxidative modification on the functional, conformational and gelling properties of myofibrillar proteins from Culter alburnus. Zhang Z; Xiong Z; Lu S; Walayat N; Hu C; Xiong H Int J Biol Macromol; 2020 Nov; 162():1442-1452. PubMed ID: 32777424 [TBL] [Abstract][Full Text] [Related]
48. Effects of grafted myofibrillar protein as a phosphate replacer in brined pork loin. Kim YJ; Kim TK; Yun HJ; Kim J; Cha JY; Lee JH; Choi YS Meat Sci; 2023 May; 199():109142. PubMed ID: 36822054 [TBL] [Abstract][Full Text] [Related]
49. Rheology and microstructure of myofibrillar protein-olive oil composite gels: effect of different non-meat protein as emulsifier. Wu M; Fei L; Zhuang T; Lei S; Ge Q; Yu H; Wang J; Wang Y J Sci Food Agric; 2018 Jan; 98(2):799-806. PubMed ID: 28677851 [TBL] [Abstract][Full Text] [Related]
50. Analyzing pH-induced changes in a myofibril model system with vibrational and fluorescence spectroscopy. Andersen PV; Veiseth-Kent E; Wold JP Meat Sci; 2017 Mar; 125():1-9. PubMed ID: 27871035 [TBL] [Abstract][Full Text] [Related]
51. Role of partial replacement of NaCl by KCl combined with other components on structure and gel properties of porcine myofibrillar protein. Hu Y; Wang Q; Sun F; Chen Q; Xia X; Liu Q; Kong B Meat Sci; 2022 Aug; 190():108832. PubMed ID: 35525019 [TBL] [Abstract][Full Text] [Related]
52. Effects of ultrasound frequency mode on myofibrillar protein structure and emulsifying properties. Chen J; Zhang X; Xue S; Xu X Int J Biol Macromol; 2020 Nov; 163():1768-1779. PubMed ID: 32961191 [TBL] [Abstract][Full Text] [Related]
53. Effects of inulin on the structure and emulsifying properties of protein components in dough. Liu J; Luo D; Li X; Xu B; Zhang X; Liu J Food Chem; 2016 Nov; 210():235-41. PubMed ID: 27211643 [TBL] [Abstract][Full Text] [Related]
54. Analyzing μ-Calpain induced proteolysis in a myofibril model system with vibrational and fluorescence spectroscopy. Andersen PV; Wold JP; Veiseth-Kent E Meat Sci; 2018 May; 139():239-246. PubMed ID: 29475101 [TBL] [Abstract][Full Text] [Related]
55. Effect of Chickpea Dietary Fiber on the Emulsion Gel Properties of Pork Myofibrillar Protein. Zhao D; Yan S; Liu J; Jiang X; Li J; Wang Y; Zhao J; Bai Y Foods; 2023 Jul; 12(13):. PubMed ID: 37444335 [TBL] [Abstract][Full Text] [Related]
56. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein. Yang J; Xiong YL J Agric Food Chem; 2015 Oct; 63(40):8896-904. PubMed ID: 26414649 [TBL] [Abstract][Full Text] [Related]
57. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle. Liu Z; Xiong YL; Chen J J Agric Food Chem; 2010 Oct; 58(19):10697-704. PubMed ID: 20806938 [TBL] [Abstract][Full Text] [Related]
58. Assessment of Water Mobility in Surf Clam and Soy Protein System during Gelation Using LF-NMR Technique. Wang S; Lin R; Cheng S; Wang Z; Tan M Foods; 2020 Feb; 9(2):. PubMed ID: 32092846 [TBL] [Abstract][Full Text] [Related]
59. High-intensity ultrasound modified the functional properties of Neosalanx taihuensis myofibrillar protein and improved its emulsion stability. Deng XH; Ni XX; Han JH; Yao WH; Fang YJ; Zhu Q; Xu MF Ultrason Sonochem; 2023 Jul; 97():106458. PubMed ID: 37257209 [TBL] [Abstract][Full Text] [Related]
60. Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder. Chen X; Zhou R; Xu X; Zhou G; Liu D Food Res Int; 2017 Oct; 100(Pt 1):193-200. PubMed ID: 28873678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]