These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29478558)
21. A Thermostable Cas12b-Powered Bioassay Coupled with Loop-Mediated Isothermal Amplification in a Customized "One-Pot" Vessel for Visual, Rapid, Sensitive, and On-Site Detection of Genetically Modified Crops. Han X; Lu M; Zhang Y; Liu X; Zhang Q; Bai X; Man S; Zhao L; Ma L J Agric Food Chem; 2024 May; 72(19):11195-11204. PubMed ID: 38564697 [TBL] [Abstract][Full Text] [Related]
22. Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediated isothermal amplification. Liu M; Luo Y; Tao R; He R; Jiang K; Wang B; Wang L Biosci Biotechnol Biochem; 2009 Nov; 73(11):2365-9. PubMed ID: 19897926 [TBL] [Abstract][Full Text] [Related]
23. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor. Wu H; Qian C; Wu C; Wang Z; Wang D; Ye Z; Ping J; Wu J; Ji F Biosens Bioelectron; 2020 Jun; 157():112153. PubMed ID: 32250930 [TBL] [Abstract][Full Text] [Related]
24. Detection of genetically modified maize and soybean in feed samples. Meriç S; Cakır O; Turgut-Kara N; Arı S Genet Mol Res; 2014 Feb; 13(1):1160-8. PubMed ID: 24634172 [TBL] [Abstract][Full Text] [Related]
25. A rapid and convenient method for on-site detection of MON863 maize through real-time fluorescence recombinase polymerase amplification. Wang X; Xie S; Chen X; Peng C; Xu X; Wei W; Ma T; Cai J; Xu J Food Chem; 2020 Sep; 324():126821. PubMed ID: 32361093 [TBL] [Abstract][Full Text] [Related]
26. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. Grohmann L; Brünen-Nieweler C; Nemeth A; Waiblinger HU J Agric Food Chem; 2009 Oct; 57(19):8913-20. PubMed ID: 19807158 [TBL] [Abstract][Full Text] [Related]
27. Construction of a reference plasmid molecule containing eight targets for the detection of genetically modified crops. Wang X; Teng D; Yang Y; Tian F; Guan Q; Wang J Appl Microbiol Biotechnol; 2011 Apr; 90(2):721-31. PubMed ID: 21336925 [TBL] [Abstract][Full Text] [Related]
28. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays. Wang C; Li R; Quan S; Shen P; Zhang D; Shi J; Yang L Anal Bioanal Chem; 2015 Jun; 407(16):4829-34. PubMed ID: 25822163 [TBL] [Abstract][Full Text] [Related]
29. Simple screening strategy with only water bath needed for the identification of insect-resistant genetically modified rice. Zhang F; Wang L; Wang R; Ying Y; Wu J Anal Chem; 2015 Feb; 87(3):1523-6. PubMed ID: 25582220 [TBL] [Abstract][Full Text] [Related]
30. A powerless on-the-spot detection protocol for transgenic crops within 30 min, from leaf sampling up to results. Wang L; Wang R; Yu Y; Zhang F; Wang X; Ying Y; Wu J; Xu J Anal Bioanal Chem; 2016 Jan; 408(2):657-62. PubMed ID: 26514670 [TBL] [Abstract][Full Text] [Related]
31. A sensitive immunosensor based on graphene-PAMAM composites for rapid detection of the CP4-EPSPS protein in genetically modified crops. Zeng H; Yang Q; Liu H; Wu G; Jiang W; Liu X; Wang J; Tang X Food Chem; 2021 Nov; 361():129901. PubMed ID: 34082384 [TBL] [Abstract][Full Text] [Related]
32. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening. Huang X; Zhai C; You Q; Chen H Anal Bioanal Chem; 2014 Jul; 406(17):4243-9. PubMed ID: 24736809 [TBL] [Abstract][Full Text] [Related]
33. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Luo T; Li L; Wang S; Cheng N Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569623 [TBL] [Abstract][Full Text] [Related]
34. A rapid sample-to-answer analytical detection of genetically modified papaya using loop-mediated isothermal amplification assay on lab-on-a-disc for field use. Loo J; But GW; Kwok HC; Lau PM; Kong SK; Ho HP; Shaw PC Food Chem; 2019 Feb; 274():822-830. PubMed ID: 30373016 [TBL] [Abstract][Full Text] [Related]
35. Isothermal amplification of genetically modified DNA sequences directly from plant tissues lowers the barriers to high-throughput and field-based genotyping. Lee D; La Mura M; Allnutt T; Powell W; Greenland A J Agric Food Chem; 2009 Oct; 57(20):9400-2. PubMed ID: 19772345 [TBL] [Abstract][Full Text] [Related]
36. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms. Moura-Melo S; Miranda-Castro R; de-Los-Santos-Álvarez N; Miranda-Ordieres AJ; Dos Santos Junior JR; da Silva Fonseca RA; Lobo-Castañón MJ Anal Chem; 2015 Aug; 87(16):8547-54. PubMed ID: 26198403 [TBL] [Abstract][Full Text] [Related]
37. Optical detection of specific genes for genetically modified soybean and maize using multiplex PCR coupled with primer extension on a plastic plate. Harikai N; Saito S; Abe M; Kondo K; Kitta K; Akiyama H; Teshima R; Kinoshita K Biosci Biotechnol Biochem; 2009 Aug; 73(8):1886-9. PubMed ID: 19661710 [TBL] [Abstract][Full Text] [Related]
38. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs). Dörries HH; Remus I; Grönewald A; Grönewald C; Berghof-Jäger K Anal Bioanal Chem; 2010 Mar; 396(6):2043-54. PubMed ID: 19798485 [TBL] [Abstract][Full Text] [Related]
39. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms. Cankar K; Ravnikar M; Zel J; Gruden K; Toplak N J AOAC Int; 2005; 88(3):814-22. PubMed ID: 16001857 [TBL] [Abstract][Full Text] [Related]
40. Detection of recombinant DNA segments introduced to genetically modified maize (Zea mays). Matsuoka T; Kuribara H; Takubo K; Akiyama H; Miura H; Goda Y; Kusakabe Y; Isshiki K; Toyoda M; Hino A J Agric Food Chem; 2002 Mar; 50(7):2100-9. PubMed ID: 11902963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]