BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29478563)

  • 1. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract.
    Pereira-Caro G; Ordóñez JL; Ludwig I; Gaillet S; Mena P; Del Rio D; Rouanet JM; Bindon KA; Moreno-Rojas JM; Crozier A
    Food Chem; 2018 Jun; 252():49-60. PubMed ID: 29478563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of red wine and grape seed proanthocyanidins in rats.
    Pereira-Caro G; Gaillet S; Ordóñez JL; Mena P; Bresciani L; Bindon KA; Del Rio D; Rouanet JM; Moreno-Rojas JM; Crozier A
    Food Funct; 2020 May; 11(5):3986-4001. PubMed ID: 32347279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UHPLC-HRMS Spectrometric Analysis: Method Validation and Plasma and Urinary Metabolite Identification after Mango Pulp Intake.
    Cáceres-Jiménez S; Rodríguez-Solana R; Dobani S; Pourshahidi K; Gill C; Moreno-Rojas JM; Almutairi TM; Crozier A; Pereira-Caro G
    J Agric Food Chem; 2023 Aug; 71(30):11520-11533. PubMed ID: 37471325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine.
    Jiménez-Girón A; Queipo-Ortuño MI; Boto-Ordóñez M; Muñoz-González I; Sánchez-Patán F; Monagas M; Martín-Álvarez PJ; Murri M; Tinahones FJ; Andrés-Lacueva C; Bartolomé B; Moreno-Arribas MV
    J Agric Food Chem; 2013 Apr; 61(16):3909-15. PubMed ID: 23578197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability and catabolism of green tea flavan-3-ols in humans.
    Del Rio D; Calani L; Cordero C; Salvatore S; Pellegrini N; Brighenti F
    Nutrition; 2010; 26(11-12):1110-6. PubMed ID: 20080030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine.
    Feliciano RP; Mecha E; Bronze MR; Rodriguez-Mateos A
    J Chromatogr A; 2016 Sep; 1464():21-31. PubMed ID: 27527878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast method using a new hydrophilic-lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines.
    Silva CL; Pereira J; Wouter VG; Giró C; Câmara JS
    Talanta; 2011 Oct; 86():82-90. PubMed ID: 22063514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine.
    Brindani N; Mena P; Calani L; Benzie I; Choi SW; Brighenti F; Zanardi F; Curti C; Del Rio D
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28440064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols.
    Gonthier MP; Cheynier V; Donovan JL; Manach C; Morand C; Mila I; Lapierre C; Rémésy C; Scalbert A
    J Nutr; 2003 Feb; 133(2):461-7. PubMed ID: 12566484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans.
    Wiese S; Esatbeyoglu T; Winterhalter P; Kruse HP; Winkler S; Bub A; Kulling SE
    Mol Nutr Food Res; 2015 Apr; 59(4):610-21. PubMed ID: 25546356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic profile of irisolidone in rats obtained by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.
    Zhang G; Sun J; Kano Y; Yuan D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 941():1-9. PubMed ID: 24184829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MS
    Chen X; Xu L; Guo S; Wang Z; Jiang L; Wang F; Zhang J; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Aug; 1124():58-71. PubMed ID: 31177049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice.
    Ordóñez JL; Pereira-Caro G; Ludwig I; Muñoz-Redondo JM; Ruiz-Moreno MJ; Crozier A; Moreno-Rojas JM
    J Chromatogr A; 2018 Nov; 1575():100-112. PubMed ID: 30228007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics, bioavailability, excretion, and metabolic analysis of Schisanlactone E, a bioactive ingredient from Kadsura heteroclita (Roxb) Craib, in rats by UHPLC-MS/MS and UHPLC-Q-Orbitrap HRMS.
    Liu R; Liu Q; Li B; Liu L; Cheng D; Cai X; Liu W; Wang W
    J Pharm Biomed Anal; 2020 Jan; 177():112875. PubMed ID: 31546138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
    Mena P; Bresciani L; Brindani N; Ludwig IA; Pereira-Caro G; Angelino D; Llorach R; Calani L; Brighenti F; Clifford MN; Gill CIR; Crozier A; Curti C; Del Rio D
    Nat Prod Rep; 2019 May; 36(5):714-752. PubMed ID: 30468210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the sulfate and glucuronide conjugates of levornidazole in human plasma and urine, and levornidazole and its five metabolites in human feces by high performance liquid chromatography-tandem mass spectrometry.
    He G; Guo B; Zhang J; Li Y; Wu X; Fan Y; Chen Y; Cao G; Yu J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1081-1082():87-100. PubMed ID: 29518721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans.
    Roowi S; Stalmach A; Mullen W; Lean ME; Edwards CA; Crozier A
    J Agric Food Chem; 2010 Jan; 58(2):1296-304. PubMed ID: 20041649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Faecal Fermentation of Monomeric and Oligomeric Flavan-3-ols: Catabolic Pathways and Stoichiometry.
    Di Pede G; Bresciani L; Brighenti F; Clifford MN; Crozier A; Del Rio D; Mena P
    Mol Nutr Food Res; 2022 Nov; 66(21):e2101090. PubMed ID: 35107868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines.
    Gonçalves J; Mendes B; Silva CL; Câmara JS
    J Chromatogr A; 2012 Mar; 1229():13-23. PubMed ID: 22305355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid method to determine colonic microbial metabolites derived from grape flavanols in rat plasma by liquid chromatography-tandem mass spectrometry.
    Margalef M; Pons Z; Muguerza B; Arola-Arnal A
    J Agric Food Chem; 2014 Aug; 62(31):7698-706. PubMed ID: 25069016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.