These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29478563)
1. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Pereira-Caro G; Ordóñez JL; Ludwig I; Gaillet S; Mena P; Del Rio D; Rouanet JM; Bindon KA; Moreno-Rojas JM; Crozier A Food Chem; 2018 Jun; 252():49-60. PubMed ID: 29478563 [TBL] [Abstract][Full Text] [Related]
2. Bioavailability of red wine and grape seed proanthocyanidins in rats. Pereira-Caro G; Gaillet S; Ordóñez JL; Mena P; Bresciani L; Bindon KA; Del Rio D; Rouanet JM; Moreno-Rojas JM; Crozier A Food Funct; 2020 May; 11(5):3986-4001. PubMed ID: 32347279 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. Jiménez-Girón A; Queipo-Ortuño MI; Boto-Ordóñez M; Muñoz-González I; Sánchez-Patán F; Monagas M; Martín-Álvarez PJ; Murri M; Tinahones FJ; Andrés-Lacueva C; Bartolomé B; Moreno-Arribas MV J Agric Food Chem; 2013 Apr; 61(16):3909-15. PubMed ID: 23578197 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability and catabolism of green tea flavan-3-ols in humans. Del Rio D; Calani L; Cordero C; Salvatore S; Pellegrini N; Brighenti F Nutrition; 2010; 26(11-12):1110-6. PubMed ID: 20080030 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. Feliciano RP; Mecha E; Bronze MR; Rodriguez-Mateos A J Chromatogr A; 2016 Sep; 1464():21-31. PubMed ID: 27527878 [TBL] [Abstract][Full Text] [Related]
7. A fast method using a new hydrophilic-lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines. Silva CL; Pereira J; Wouter VG; Giró C; Câmara JS Talanta; 2011 Oct; 86():82-90. PubMed ID: 22063514 [TBL] [Abstract][Full Text] [Related]
8. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine. Brindani N; Mena P; Calani L; Benzie I; Choi SW; Brighenti F; Zanardi F; Curti C; Del Rio D Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28440064 [TBL] [Abstract][Full Text] [Related]
9. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. Gonthier MP; Cheynier V; Donovan JL; Manach C; Morand C; Mila I; Lapierre C; Rémésy C; Scalbert A J Nutr; 2003 Feb; 133(2):461-7. PubMed ID: 12566484 [TBL] [Abstract][Full Text] [Related]
10. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans. Wiese S; Esatbeyoglu T; Winterhalter P; Kruse HP; Winkler S; Bub A; Kulling SE Mol Nutr Food Res; 2015 Apr; 59(4):610-21. PubMed ID: 25546356 [TBL] [Abstract][Full Text] [Related]
11. Metabolic profile of irisolidone in rats obtained by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Zhang G; Sun J; Kano Y; Yuan D J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 941():1-9. PubMed ID: 24184829 [TBL] [Abstract][Full Text] [Related]
12. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MS Chen X; Xu L; Guo S; Wang Z; Jiang L; Wang F; Zhang J; Liu B J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Aug; 1124():58-71. PubMed ID: 31177049 [TBL] [Abstract][Full Text] [Related]
13. A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. Ordóñez JL; Pereira-Caro G; Ludwig I; Muñoz-Redondo JM; Ruiz-Moreno MJ; Crozier A; Moreno-Rojas JM J Chromatogr A; 2018 Nov; 1575():100-112. PubMed ID: 30228007 [TBL] [Abstract][Full Text] [Related]
14. Pharmacokinetics, bioavailability, excretion, and metabolic analysis of Schisanlactone E, a bioactive ingredient from Kadsura heteroclita (Roxb) Craib, in rats by UHPLC-MS/MS and UHPLC-Q-Orbitrap HRMS. Liu R; Liu Q; Li B; Liu L; Cheng D; Cai X; Liu W; Wang W J Pharm Biomed Anal; 2020 Jan; 177():112875. PubMed ID: 31546138 [TBL] [Abstract][Full Text] [Related]
15. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Mena P; Bresciani L; Brindani N; Ludwig IA; Pereira-Caro G; Angelino D; Llorach R; Calani L; Brighenti F; Clifford MN; Gill CIR; Crozier A; Curti C; Del Rio D Nat Prod Rep; 2019 May; 36(5):714-752. PubMed ID: 30468210 [TBL] [Abstract][Full Text] [Related]
16. Determination of the sulfate and glucuronide conjugates of levornidazole in human plasma and urine, and levornidazole and its five metabolites in human feces by high performance liquid chromatography-tandem mass spectrometry. He G; Guo B; Zhang J; Li Y; Wu X; Fan Y; Chen Y; Cao G; Yu J J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1081-1082():87-100. PubMed ID: 29518721 [TBL] [Abstract][Full Text] [Related]
17. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. Roowi S; Stalmach A; Mullen W; Lean ME; Edwards CA; Crozier A J Agric Food Chem; 2010 Jan; 58(2):1296-304. PubMed ID: 20041649 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Faecal Fermentation of Monomeric and Oligomeric Flavan-3-ols: Catabolic Pathways and Stoichiometry. Di Pede G; Bresciani L; Brighenti F; Clifford MN; Crozier A; Del Rio D; Mena P Mol Nutr Food Res; 2022 Nov; 66(21):e2101090. PubMed ID: 35107868 [TBL] [Abstract][Full Text] [Related]
19. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. Gonçalves J; Mendes B; Silva CL; Câmara JS J Chromatogr A; 2012 Mar; 1229():13-23. PubMed ID: 22305355 [TBL] [Abstract][Full Text] [Related]
20. A rapid method to determine colonic microbial metabolites derived from grape flavanols in rat plasma by liquid chromatography-tandem mass spectrometry. Margalef M; Pons Z; Muguerza B; Arola-Arnal A J Agric Food Chem; 2014 Aug; 62(31):7698-706. PubMed ID: 25069016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]