BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29478638)

  • 1. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant.
    Jin P; Song J; Wang XC; Jin X
    J Environ Sci (China); 2018 Feb; 64():181-189. PubMed ID: 29478638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective binding behavior of humic acid removal by aluminum coagulation.
    Jin P; Song J; Yang L; Jin X; Wang XC
    Environ Pollut; 2018 Feb; 233():290-298. PubMed ID: 29096301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence and FT-IR spectroscopic studies of Suwannee River fulvic acid complexation with aluminum, terbium and calcium.
    Elkins KM; Nelson DJ
    J Inorg Biochem; 2001 Nov; 87(1-2):81-96. PubMed ID: 11709217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential binding properties of carboxyl and hydroxyl groups with aluminium salts for humic acid removal.
    Song J; Jin X; Wang XC; Jin P
    Chemosphere; 2019 Nov; 234():478-487. PubMed ID: 31229708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter.
    Chen W; Habibul N; Liu XY; Sheng GP; Yu HQ
    Environ Sci Technol; 2015 Feb; 49(4):2052-8. PubMed ID: 25611159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of hydrolyzed Al species in humic acid coagulation.
    Lin JL; Huang C; Dempsey B; Hu JY
    Water Res; 2014 Jun; 56():314-24. PubMed ID: 24704984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coagulation behavior of polyaluminum-titanium chloride composite coagulant with humic acid: A mechanism analysis.
    Liu B; Gao Y; Pan J; Feng Q; Yue Q; Guo K; Gao B
    Water Res; 2022 Jul; 220():118633. PubMed ID: 35613484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].
    Bu GJ; Yu J; Di HH; Luo SJ; Zhou DZ; Xiao Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):362-6. PubMed ID: 25970893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of methylmercury to humic acids (HA): Influence of solar radiation and sulfide addition reaction of HA.
    Luo H; Cheng Q; He D; Zeng G; Sun J; Li J; Pan X
    Sci Total Environ; 2022 Jun; 827():154356. PubMed ID: 35259369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of photo-irradiation on mercury binding to dissolved organic matter: Insights from FT-IR and synchronous fluorescence two-dimensional correlation spectroscopy.
    Luo H; Cheng Q; He D; Wang X; Pan X
    Chemosphere; 2022 Jan; 287(Pt 1):132027. PubMed ID: 34455123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relating Cd
    Bai H; Jiang Z; He M; Ye B; Wei S
    J Environ Sci (China); 2018 Aug; 70():154-165. PubMed ID: 30037402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FT-IR and synchronous fluorescence two-dimensional correlation spectroscopic analysis on the binding properties of mercury onto humic acids as influenced by pH modification and sulfide addition.
    Luo H; Cheng Q; Fan Q; He D; Wang X; Sun J; Li J; Pan X
    Sci Total Environ; 2022 May; 819():152047. PubMed ID: 34856249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis.
    Li T; Song F; Zhang J; Tian S; Huang N; Xing B; Bai Y
    Environ Pollut; 2020 Jan; 256():113465. PubMed ID: 31679870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.
    Chen W; Qian C; Liu XY; Yu HQ
    Environ Sci Technol; 2014 Oct; 48(19):11119-26. PubMed ID: 25222835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water.
    Yang ZL; Gao BY; Yue QY; Wang Y
    J Hazard Mater; 2010 Jun; 178(1-3):596-603. PubMed ID: 20188465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and mid-infrared changes of humic substances from burned soils.
    Vergnoux A; Guiliano M; Di Rocco R; Domeizel M; Théraulaz F; Doumenq P
    Environ Res; 2011 Feb; 111(2):205-14. PubMed ID: 20362980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.
    He D; Guan X; Ma J; Yu M
    Environ Sci Technol; 2009 Nov; 43(21):8332-7. PubMed ID: 19924965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.
    Boguta P; Sokołowska Z
    PLoS One; 2016; 11(4):e0153626. PubMed ID: 27077915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phosphate on removal of humic substances by aluminum sulfate coagulant.
    Cheng WP; Chi FH; Yu RF
    J Colloid Interface Sci; 2004 Apr; 272(1):153-7. PubMed ID: 14985032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular rigidity and diffusivity of Al3+ and Ca2+ humates as revealed by NMR spectroscopy.
    Nebbioso A; Piccolo A
    Environ Sci Technol; 2009 Apr; 43(7):2417-24. PubMed ID: 19455755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.