These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29478638)

  • 41. Binding characteristics of copper onto biochar-derived DOM using general, heterospectral and moving-window two-dimensional correlation analyses.
    Wu J; Tu W; Li C; He F
    J Hazard Mater; 2022 Aug; 435():129021. PubMed ID: 35490630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid.
    Baigorri R; Fuentes M; González-Gaitano G; García-Mina JM; Almendros G; González-Vila FJ
    J Agric Food Chem; 2009 Apr; 57(8):3266-72. PubMed ID: 19281175
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent.
    Duarte RM; Santos EB; Duarte AC
    Water Res; 2003 Oct; 37(17):4073-80. PubMed ID: 12946888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process.
    Qian L; Chen B
    J Agric Food Chem; 2014 Jan; 62(2):373-80. PubMed ID: 24364719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pb(II) binding to humic substances: an equilibrium and spectroscopic study.
    Orsetti S; Marco-Brown JL; Andrade EM; Molina FV
    Environ Sci Technol; 2013 Aug; 47(15):8325-33. PubMed ID: 23805795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binding of Pb(II) in the system humic acid/goethite at acidic pH.
    Orsetti S; Quiroga Mde L; Andrade EM
    Chemosphere; 2006 Dec; 65(11):2313-21. PubMed ID: 16797054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Concentration and spectrum characteristic of the NaOH extracted humic substances in three size fractions of sediments from the Yellow River].
    Sun LY; Ni JR; Sun WL
    Huan Jing Ke Xue; 2007 Jun; 28(6):1324-31. PubMed ID: 17674744
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catechin transformation as influenced by aluminum.
    Chen YM; Wang MK; Huang PM
    J Agric Food Chem; 2006 Jan; 54(1):212-8. PubMed ID: 16390201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compost effect on soil humic acid: A NMR study.
    Adani F; Genevini P; Tambone F; Montoneri E
    Chemosphere; 2006 Nov; 65(8):1414-8. PubMed ID: 16698065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Characterizing the interaction between roxarsone and humic acid by fluorescence quenching experiment].
    Zhu JP; Mei T; Peng Y; Ge SY; Li SY; Wang GX
    Huan Jing Ke Xue; 2014 Jul; 35(7):2620-6. PubMed ID: 25244846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding of organic ligands with Al(III) in dissolved organic matter from soil: implications for soil organic carbon storage.
    Yu GH; Wu MJ; Wei GR; Luo YH; Ran W; Wang BR; Zhang JC; Shen QR
    Environ Sci Technol; 2012 Jun; 46(11):6102-9. PubMed ID: 22548409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymerization of catechin catalyzed by Mn-, Fe- and Al-oxides.
    Chen YM; Tsao TM; Liu CC; Huang PM; Wang MK
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):217-23. PubMed ID: 20674290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.
    Wu X; Tan X; Yang S; Wen T; Guo H; Wang X; Xu A
    Water Res; 2013 Aug; 47(12):4159-68. PubMed ID: 23582669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of coagulation mechanisms on the residual aluminum--the roles of coagulant species and MW of organic matter.
    Jiao R; Xu H; Xu W; Yang X; Wang D
    J Hazard Mater; 2015 Jun; 290():16-25. PubMed ID: 25731148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study.
    Bai Y; Wu F; Liu C; Guo J; Fu P; Li W; Xing B
    Environ Toxicol Chem; 2008 Jan; 27(1):95-102. PubMed ID: 18092851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combining kinetic investigation with surface spectroscopic examination to study the role of aromatic carboxyl groups in NOM adsorption by aluminum hydroxide.
    Guan XH; Chen GH; Shang C
    J Colloid Interface Sci; 2006 Sep; 301(2):419-27. PubMed ID: 16777125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models.
    Yan M; Benedetti MF; Korshin GV
    Water Res; 2013 Sep; 47(14):5439-46. PubMed ID: 23850210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction of humic substances and hematite: FTIR study.
    Fu HB; Quan X; Chen S; Zhao HM; Zhao YZ
    J Environ Sci (China); 2005; 17(1):43-7. PubMed ID: 15900755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.