BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 29478644)

  • 1. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.
    Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S
    J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the bioconcentration factor of highly hydrophobic organic chemicals.
    Garg R; Smith CJ
    Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods.
    Lampic A; Parnis JM
    Environ Toxicol Chem; 2020 Apr; 39(4):775-786. PubMed ID: 32022323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals.
    Strempel S; Nendza M; Scheringer M; Hungerbühler K
    Environ Toxicol Chem; 2013 Apr; 32(5):1187-95. PubMed ID: 23382013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting PBT and CMR properties of substances of very high concern (SVHCs) using QSAR models, and application for K-REACH.
    Moon J; Lee B; Ra JS; Kim KT
    Toxicol Rep; 2020; 7():995-1000. PubMed ID: 32874922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.
    Nendza M; Kühne R; Lombardo A; Strempel S; Schüürmann G
    Sci Total Environ; 2018 Mar; 616-617():97-106. PubMed ID: 29107783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water.
    Reppas-Chrysovitsinos E; Sobek A; MacLeod M
    Environ Sci Process Impacts; 2016 Jun; 18(6):667-76. PubMed ID: 27158699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.
    Yu S; Gao S; Gan Y; Zhang Y; Ruan X; Wang Y; Yang L; Shi J
    SAR QSAR Environ Res; 2016 Apr; 27(4):249-63. PubMed ID: 26998720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.
    Sangion A; Gramatica P
    Environ Res; 2016 May; 147():297-306. PubMed ID: 26921826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case.
    Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI
    J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of chemical screening outcomes based on different partitioning property estimation methods.
    Zhang X; Brown TN; Wania F; Heimstad ES; Goss KU
    Environ Int; 2010 Aug; 36(6):514-20. PubMed ID: 20451252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals.
    Gramatica P; Papa E; Sangion A
    Environ Sci Process Impacts; 2018 Jan; 20(1):38-47. PubMed ID: 29226926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of physicochemical properties of 52 non-PBDE brominated flame retardants and evaluation of their overall persistence and long-range transport potential.
    Kuramochi H; Takigami H; Scheringer M; Sakai S
    Sci Total Environ; 2014 Sep; 491-492():108-17. PubMed ID: 24802073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSPR modeling of octanol-water partition coefficient and organic carbon normalized sorption coefficient of diverse organic chemicals using Extended Topochemical Atom (ETA) indices.
    Pandey SK; Roy K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111411. PubMed ID: 33080425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.