BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29478644)

  • 21. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals.
    Doucette WJ
    Environ Toxicol Chem; 2003 Aug; 22(8):1771-88. PubMed ID: 12924577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the fate and effects of tributyltin in marine systems.
    Meador JP
    Rev Environ Contam Toxicol; 2000; 166():1-48. PubMed ID: 10868075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncertainty in octanol-water partition coefficient: implications for risk assessment and remedial costs.
    Linkov I; Ames MR; Crouch EA; Satterstrom FK
    Environ Sci Technol; 2005 Sep; 39(18):6917-22. PubMed ID: 16201611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting the bioaccumulation patterns of chemicals through data-driven approaches.
    Grisoni F; Consonni V; Vighi M
    Chemosphere; 2018 Oct; 208():273-284. PubMed ID: 29879561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds.
    Asikainen AH; Ruuskanen J; Tuppurainen KA
    SAR QSAR Environ Res; 2004 Feb; 15(1):19-32. PubMed ID: 15113066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation.
    Whelan MJ; Kim J
    Integr Environ Assess Manag; 2022 May; 18(3):599-621. PubMed ID: 34375022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments.
    Nguyen TH; Goss KU; Ball WP
    Environ Sci Technol; 2005 Feb; 39(4):913-24. PubMed ID: 15773462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure- and property-activity relationship models for prediction of microbial toxicity of organic chemicals to activated sludge.
    Nirmalakhandan N; Egemen E; Trevizo C; Xu S
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):112-9. PubMed ID: 9515083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Publicly available QSPR models for environmental media persistence.
    Lunghini F; Marcou G; Azam P; Enrici MH; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2020 Jul; 31(7):493-510. PubMed ID: 32588650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors.
    Linden L; Goss KU; Endo S
    Environ Sci Process Impacts; 2017 Mar; 19(3):261-269. PubMed ID: 28009898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico model for predicting soil organic carbon normalized sorption coefficient (K(OC)) of organic chemicals.
    Wang Y; Chen J; Yang X; Lyakurwa F; Li X; Qiao X
    Chemosphere; 2015 Jan; 119():438-444. PubMed ID: 25084062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable QSAR for estimating Koc for persistent organic pollutants: correlation with molecular connectivity indices.
    Baker JR; Mihelcic JR; Sabljic A
    Chemosphere; 2001 Oct; 45(2):213-21. PubMed ID: 11572613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical topology and ecotoxicology.
    Sabljić A
    Sci Total Environ; 1991 Dec; 109-110():197-220. PubMed ID: 1815352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.
    Hoke R; Huggett D; Brasfield S; Brown B; Embry M; Fairbrother A; Kivi M; Paumen ML; Prosser R; Salvito D; Scroggins R
    Integr Environ Assess Manag; 2016 Jan; 12(1):109-22. PubMed ID: 26272585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.