These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

779 related articles for article (PubMed ID: 29478649)

  • 1. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO
    Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H
    J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic removal of toluene using MnO
    Gong P; He F; Xie J; Fang D
    Chemosphere; 2023 Mar; 318():137938. PubMed ID: 36702414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene.
    Si W; Wang Y; Zhao S; Hu F; Li J
    Environ Sci Technol; 2016 Apr; 50(8):4572-8. PubMed ID: 26886715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Catalytic Oxidation of Typical Volatile Organic Compound Mixtures on Mn-Based Catalysts: Significant Promotion Effect and Reaction Mechanism.
    Pan T; Deng H; Lu Y; Ma J; Wang L; Zhang C; He H
    Environ Sci Technol; 2023 Jan; 57(2):1123-1133. PubMed ID: 36647680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene.
    Deng J; He S; Xie S; Yang H; Liu Y; Guo G; Dai H
    Environ Sci Technol; 2015 Sep; 49(18):11089-95. PubMed ID: 26287508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co
    Zhao Q; Liu Q; Zheng Y; Han R; Song C; Ji N; Ma D
    Chemosphere; 2020 Apr; 244():125532. PubMed ID: 32050334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst.
    Santos VP; Pereira MF; Órfão JJ; Figueiredo JL
    J Hazard Mater; 2011 Jan; 185(2-3):1236-40. PubMed ID: 21044815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating oxygen vacancies and hydroxyl groups of α-MnO
    Wen T; Wang J; Zhang J; Long C
    Environ Res; 2023 Dec; 238(Pt 1):117176. PubMed ID: 37729962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene.
    Xie S; Dai H; Deng J; Yang H; Han W; Arandiyan H; Guo G
    J Hazard Mater; 2014 Aug; 279():392-401. PubMed ID: 25093549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced catalytic performance for VOCs oxidation on the CoAlO oxides by KMnO
    Zhao Q; Liu Q; Song C; Ji N; Ma D; Lu X
    Chemosphere; 2019 Mar; 218():895-906. PubMed ID: 30609494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene.
    Wang F; Dai H; Deng J; Bai G; Ji K; Liu Y
    Environ Sci Technol; 2012 Apr; 46(7):4034-41. PubMed ID: 22413904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin MnO
    Bai B; Huang Y; Chen J; Lei J; Wang S; Wang J
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1205-1216. PubMed ID: 37797496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvesting the vibration energy of α-MnO
    He T; Shao D; Zeng X; Rong S
    Chemosphere; 2020 Dec; 261():127778. PubMed ID: 32739692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO
    Zhu J; Zhang W; Qi Q; Zhang H; Zhang Y; Sun D; Liang P
    Sci Rep; 2019 Aug; 9(1):12162. PubMed ID: 31434924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Depth Understanding of the Oxidative Compatibility of Volatile Organic Compounds with Mn
    Pan T; Bai S; Zhang X; Deng H; Lu Y; Shan W; He H
    Environ Sci Technol; 2024 May; 58(21):9381-9392. PubMed ID: 38747138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries.
    Du G; Liu X; Zong Y; Hor TS; Yu A; Liu Z
    Nanoscale; 2013 Jun; 5(11):4657-61. PubMed ID: 23608821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-Induced
    Huang Q; Zhao P; Lv L; Zhang W; Pan B
    Environ Sci Technol; 2023 Jun; 57(24):9096-9104. PubMed ID: 37289934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient α-MnO
    Huang J; Fang R; Sun Y; Li J; Dong F
    Chemosphere; 2021 Jan; 263():128103. PubMed ID: 33297098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of VOCs from gas streams with double perovskite-type catalysts.
    Pan KL; Pan GT; Chong S; Chang MB
    J Environ Sci (China); 2018 Jul; 69():205-216. PubMed ID: 29941256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.
    Bai B; Qiao Q; Arandiyan H; Li J; Hao J
    Environ Sci Technol; 2016 Mar; 50(5):2635-40. PubMed ID: 26629972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.