These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29478662)

  • 21. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805).
    Musee N; Oberholster PJ; Sikhwivhilu L; Botha AM
    Chemosphere; 2010 Nov; 81(10):1196-203. PubMed ID: 20943245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos.
    Böhme S; Stärk HJ; Kühnel D; Reemtsma T
    Anal Bioanal Chem; 2015 Jul; 407(18):5477-85. PubMed ID: 25943260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona.
    Senapati VA; Kansara K; Shanker R; Dhawan A; Kumar A
    Mutagenesis; 2017 Oct; 32(5):479-490. PubMed ID: 29048576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles.
    Praetorius A; Arvidsson R; Molander S; Scheringer M
    Environ Sci Process Impacts; 2013 Jan; 15(1):161-8. PubMed ID: 24592434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation.
    Ma X; Geisler-Lee J; Deng Y; Kolmakov A
    Sci Total Environ; 2010 Jul; 408(16):3053-61. PubMed ID: 20435342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered nanoparticles and their identification among natural nanoparticles.
    Zänker H; Schierz A
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():107-32. PubMed ID: 22482788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques.
    Abdolahpur Monikh F; Chupani L; Vijver MG; Vancová M; Peijnenburg WJGM
    Sci Total Environ; 2019 Apr; 660():1283-1293. PubMed ID: 30743923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered nanoparticles and organic matter: a review of the state-of-the-art.
    Grillo R; Rosa AH; Fraceto LF
    Chemosphere; 2015 Jan; 119():608-619. PubMed ID: 25128893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges.
    Bathi JR; Moazeni F; Upadhyayula VKK; Chowdhury I; Palchoudhury S; Potts GE; Gadhamshetty V
    Sci Total Environ; 2021 Nov; 793():148560. PubMed ID: 34328971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review.
    Sousa VS; Ribau Teixeira M
    Sci Total Environ; 2020 Mar; 707():136077. PubMed ID: 31863978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.
    Tiede K; Hassellöv M; Breitbarth E; Chaudhry Q; Boxall AB
    J Chromatogr A; 2009 Jan; 1216(3):503-9. PubMed ID: 18805541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.
    Luo Z; Wang Z; Wei Q; Yan C; Liu F
    J Hazard Mater; 2011 Sep; 192(3):1364-9. PubMed ID: 21794978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review.
    Enescu D; Cerqueira MA; Fucinos P; Pastrana LM
    Food Chem Toxicol; 2019 Dec; 134():110814. PubMed ID: 31520669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lake retention of manufactured nanoparticles.
    Koelmans AA; Quik JT; Velzeboer I
    Environ Pollut; 2015 Jan; 196():171-5. PubMed ID: 25463711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing.
    von der Kammer F; Ottofuelling S; Hofmann T
    Environ Pollut; 2010 Dec; 158(12):3472-81. PubMed ID: 20724049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?
    Abdolahpur Monikh F; Arenas-Lago D; Porcal P; Grillo R; Zhang P; Guo Z; Vijver MG; J G M Peijnenburg W
    Nanotoxicology; 2020 Apr; 14(3):310-325. PubMed ID: 31775550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.