These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29478672)

  • 1. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone.
    Khan NA; Johnson MD; Carroll KC
    J Contam Hydrol; 2018 Mar; 210():31-41. PubMed ID: 29478672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone.
    Khan NA; Johnson MD; Kubicki JD; Holguin FO; Dungan B; Carroll KC
    Chemosphere; 2019 Mar; 219():335-344. PubMed ID: 30551099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin.
    Dettmer A; Ball R; Boving TB; Khan NA; Schaub T; Sudasinghe N; Fernandez CA; Carroll KC
    J Contam Hydrol; 2017 Jan; 196():1-9. PubMed ID: 27993469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants.
    Eberle D; Ball R; Boving TB
    Chemosphere; 2016 Feb; 144():728-35. PubMed ID: 26408980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J; Tick GR; Brusseau ML; Carroll KC
    Environ Pollut; 2019 Sep; 252(Pt A):777-783. PubMed ID: 31200203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane.
    Adamson DT; Anderson RH; Mahendra S; Newell CJ
    Environ Sci Technol; 2015 Jun; 49(11):6510-8. PubMed ID: 25970261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants.
    Fan W; An W; Huo M; Xiao D; Lyu T; Cui J
    Water Res; 2021 May; 196():117039. PubMed ID: 33761397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process.
    Yan N; Liu F; Liu B; Brusseau ML
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32088-32095. PubMed ID: 30218336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide.
    Suh JH; Mohseni M
    Water Res; 2004 May; 38(10):2596-604. PubMed ID: 15159163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte.
    Kishimoto N; Nakagawa T; Asano M; Abe M; Yamada M; Ono Y
    Water Res; 2008 Jan; 42(1-2):379-85. PubMed ID: 17698164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.
    Adamson DT; de Blanc PC; Farhat SK; Newell CJ
    Sci Total Environ; 2016 Aug; 562():98-107. PubMed ID: 27096631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition.
    Tian GP; Wu QY; Li A; Wang WL; Hu HY
    Water Sci Technol; 2014; 70(12):1934-40. PubMed ID: 25521127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural attenuation method for contaminant remediation reagent delivery assessment for in situ chemical oxidation using aqueous ozone.
    Khan NA; Carroll KC
    Chemosphere; 2020 May; 247():125848. PubMed ID: 31958648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation.
    Luo YH; Long X; Wang B; Zhou C; Tang Y; Krajmalnik-Brown R; Rittmann BE
    Environ Sci Technol; 2021 May; 55(9):6363-6372. PubMed ID: 33881824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.
    Čehovin M; Medic A; Scheideler J; Mielcke J; Ried A; Kompare B; Žgajnar Gotvajn A
    Ultrason Sonochem; 2017 Jul; 37():394-404. PubMed ID: 28427649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.
    Myers MA; Johnson NW; Marin EZ; Pornwongthong P; Liu Y; Gedalanga PB; Mahendra S
    Environ Pollut; 2018 Sep; 240():916-924. PubMed ID: 29879691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium.
    Yu L; Mehrabani-Zeinabad M; Achari G; Langford CH
    Chemosphere; 2016 Oct; 160():155-61. PubMed ID: 27372265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.