These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29478746)
1. Methylphenidate alters monoaminergic and metabolic pathways in the cerebellum of adolescent rats. Quansah E; Ruiz-Rodado V; Grootveld M; Zetterström TSC Eur Neuropsychopharmacol; 2018 Apr; 28(4):513-528. PubMed ID: 29478746 [TBL] [Abstract][Full Text] [Related]
2. Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Quansah E; Zetterström TSC Neurochem Int; 2019 Mar; 124():193-199. PubMed ID: 30660754 [TBL] [Abstract][Full Text] [Related]
3. Effects of developmental methylphenidate (MPH) treatment on monoamine neurochemistry of male and female rats. Panos JJ; O'Callaghan JP; Miller DB; Ferguson SA Neurotoxicol Teratol; 2014; 45():70-4. PubMed ID: 25132048 [TBL] [Abstract][Full Text] [Related]
4. Methylphenidate increases glucose uptake in the brain of young and adult rats. Réus GZ; Scaini G; Titus SE; Furlanetto CB; Wessler LB; Ferreira GK; Gonçalves CL; Jeremias GC; Quevedo J; Streck EL Pharmacol Rep; 2015 Oct; 67(5):1033-40. PubMed ID: 26398400 [TBL] [Abstract][Full Text] [Related]
6. Chronic methylphenidate regulates genes and proteins mediating neuroplasticity in the juvenile rat brain. Quansah E; Sgamma T; Jaddoa E; Zetterström TSC Neurosci Lett; 2017 Jul; 654():93-98. PubMed ID: 28633952 [TBL] [Abstract][Full Text] [Related]
7. Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Gomes KM; Inácio CG; Valvassori SS; Réus GZ; Boeck CR; Dal-Pizzol F; Quevedo J Neurosci Lett; 2009 Nov; 465(1):95-8. PubMed ID: 19716398 [TBL] [Abstract][Full Text] [Related]
8. MicroPET/CT assessment of neurochemical effects in the brain after long-term methylphenidate treatment in nonhuman primates. Zhang X; Talpos J; Berridge MS; Apana SM; Slikker W; Wang C; Paule MG Neurotoxicol Teratol; 2021; 87():107017. PubMed ID: 34265415 [TBL] [Abstract][Full Text] [Related]
9. The impact of methylphenidate and its enantiomers on dopamine synthesis and metabolism in vitro. Bartl J; Palazzesi F; Parrinello M; Hommers L; Riederer P; Walitza S; Grünblatt E Prog Neuropsychopharmacol Biol Psychiatry; 2017 Oct; 79(Pt B):281-288. PubMed ID: 28690202 [TBL] [Abstract][Full Text] [Related]
10. Effects of acute and chronic methylphenidate on delay discounting. Slezak JM; Anderson KG Pharmacol Biochem Behav; 2011 Oct; 99(4):545-51. PubMed ID: 21669219 [TBL] [Abstract][Full Text] [Related]
12. Isopropylphenidate: an ester homolog of methylphenidate with sustained and selective dopaminergic activity and reduced drug interaction liability. Markowitz JS; Zhu HJ; Patrick KS J Child Adolesc Psychopharmacol; 2013 Dec; 23(10):648-54. PubMed ID: 24261661 [TBL] [Abstract][Full Text] [Related]
13. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Rubia K; Halari R; Cubillo A; Mohammad AM; Brammer M; Taylor E Neuropharmacology; 2009 Dec; 57(7-8):640-52. PubMed ID: 19715709 [TBL] [Abstract][Full Text] [Related]
14. Methylphenidate alters NCS-1 expression in rat brain. Souza RP; Soares EC; Rosa DV; Souza BR; Réus GZ; Barichello T; Gomes KM; Gomez MV; Quevedo J; Romano-Silva MA Neurochem Int; 2008 Jul; 53(1-2):12-6. PubMed ID: 18514368 [TBL] [Abstract][Full Text] [Related]
15. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Kim H; Heo HI; Kim DH; Ko IG; Lee SS; Kim SE; Kim BK; Kim TW; Ji ES; Kim JD; Shin MS; Choi YW; Kim CJ Neurosci Lett; 2011 Oct; 504(1):35-9. PubMed ID: 21907264 [TBL] [Abstract][Full Text] [Related]
16. Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of β-adrenergic and D1/D5 receptors. Rozas C; Carvallo C; Contreras D; Carreño M; Ugarte G; Delgado R; Zeise ML; Morales B Neuropharmacology; 2015 Dec; 99():15-27. PubMed ID: 26165920 [TBL] [Abstract][Full Text] [Related]
17. Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder. Quinn D; Wigal S; Swanson J; Hirsch S; Ottolini Y; Dariani M; Roffman M; Zeldis J; Cooper T J Am Acad Child Adolesc Psychiatry; 2004 Nov; 43(11):1422-9. PubMed ID: 15502602 [TBL] [Abstract][Full Text] [Related]
18. Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats. Ruocco LA; Carnevale UA; Treno C; Sadile AG; Melisi D; Arra C; Ibba M; Schirru C; Carboni E Behav Brain Res; 2010 Jun; 210(1):99-106. PubMed ID: 20156489 [TBL] [Abstract][Full Text] [Related]
19. Randomized, Double-Blind, Placebo-Controlled Acute Comparator Trials of Lisdexamfetamine and Extended-Release Methylphenidate in Adolescents With Attention-Deficit/Hyperactivity Disorder. Newcorn JH; Nagy P; Childress AC; Frick G; Yan B; Pliszka S CNS Drugs; 2017 Nov; 31(11):999-1014. PubMed ID: 28980198 [TBL] [Abstract][Full Text] [Related]
20. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Cheng J; Xiong Z; Duffney LJ; Wei J; Liu A; Liu S; Chen GJ; Yan Z Biol Psychiatry; 2014 Dec; 76(12):953-62. PubMed ID: 24832867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]