These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29478821)
1. Disease Variants of FGFR3 Reveal Molecular Basis for the Recognition and Additional Roles for Cdc37 in Hsp90 Chaperone System. Bunney TD; Inglis AJ; Sanfelice D; Farrell B; Kerr CJ; Thompson GS; Masson GR; Thiyagarajan N; Svergun DI; Williams RL; Breeze AL; Katan M Structure; 2018 Mar; 26(3):446-458.e8. PubMed ID: 29478821 [TBL] [Abstract][Full Text] [Related]
2. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. Stetz G; Verkhivker GM J Chem Inf Model; 2018 Feb; 58(2):405-421. PubMed ID: 29432007 [TBL] [Abstract][Full Text] [Related]
3. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. Czemeres J; Buse K; Verkhivker GM PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381 [TBL] [Abstract][Full Text] [Related]
4. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678 [TBL] [Abstract][Full Text] [Related]
5. Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: implications for therapeutic manipulation. Laederich MB; Degnin CR; Lunstrum GP; Holden P; Horton WA J Biol Chem; 2011 Jun; 286(22):19597-604. PubMed ID: 21487019 [TBL] [Abstract][Full Text] [Related]
6. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks. Stetz G; Astl L; Verkhivker GM J Chem Theory Comput; 2020 Jul; 16(7):4706-4725. PubMed ID: 32492340 [TBL] [Abstract][Full Text] [Related]
7. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666 [TBL] [Abstract][Full Text] [Related]
8. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Keramisanou D; Aboalroub A; Zhang Z; Liu W; Marshall D; Diviney A; Larsen RW; Landgraf R; Gelis I Mol Cell; 2016 Apr; 62(2):260-271. PubMed ID: 27105117 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Miyata Y Cell Mol Life Sci; 2009 Jun; 66(11-12):1840-9. PubMed ID: 19387550 [TBL] [Abstract][Full Text] [Related]
10. Exploring Biomolecular Interaction Between the Molecular Chaperone Hsp90 and Its Client Protein Kinase Cdc37 using Field-Effect Biosensing Technology. Lerner Y; Sukumaran S; Chua MS; So SK; Qvit N J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435890 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Bachman AB; Keramisanou D; Xu W; Beebe K; Moses MA; Vasantha Kumar MV; Gray G; Noor RE; van der Vaart A; Neckers L; Gelis I Nat Commun; 2018 Jan; 9(1):265. PubMed ID: 29343704 [TBL] [Abstract][Full Text] [Related]
12. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411 [TBL] [Abstract][Full Text] [Related]
13. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites. Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315 [TBL] [Abstract][Full Text] [Related]
14. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. Stetz G; Tse A; Verkhivker GM PLoS One; 2017; 12(11):e0186089. PubMed ID: 29095844 [TBL] [Abstract][Full Text] [Related]
15. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches. Verba KA; Agard DA Trends Biochem Sci; 2017 Oct; 42(10):799-811. PubMed ID: 28784328 [TBL] [Abstract][Full Text] [Related]
16. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy. Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599 [TBL] [Abstract][Full Text] [Related]
17. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Vaughan CK; Mollapour M; Smith JR; Truman A; Hu B; Good VM; Panaretou B; Neckers L; Clarke PA; Workman P; Piper PW; Prodromou C; Pearl LH Mol Cell; 2008 Sep; 31(6):886-95. PubMed ID: 18922470 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329 [TBL] [Abstract][Full Text] [Related]
19. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins. Li R; Yuan F; Fu W; Zhang L; Zhang N; Wang Y; Ma K; Li X; Wang L; Zhu WG; Zhao Y J Biol Chem; 2017 Feb; 292(7):2830-2841. PubMed ID: 28073914 [TBL] [Abstract][Full Text] [Related]
20. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]