BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29478821)

  • 1. Disease Variants of FGFR3 Reveal Molecular Basis for the Recognition and Additional Roles for Cdc37 in Hsp90 Chaperone System.
    Bunney TD; Inglis AJ; Sanfelice D; Farrell B; Kerr CJ; Thompson GS; Masson GR; Thiyagarajan N; Svergun DI; Williams RL; Breeze AL; Katan M
    Structure; 2018 Mar; 26(3):446-458.e8. PubMed ID: 29478821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2018 Feb; 58(2):405-421. PubMed ID: 29432007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins.
    Smith JR; de Billy E; Hobbs S; Powers M; Prodromou C; Pearl L; Clarke PA; Workman P
    Oncogene; 2015 Jan; 34(1):15-26. PubMed ID: 24292678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: implications for therapeutic manipulation.
    Laederich MB; Degnin CR; Lunstrum GP; Holden P; Horton WA
    J Biol Chem; 2011 Jun; 286(22):19597-604. PubMed ID: 21487019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks.
    Stetz G; Astl L; Verkhivker GM
    J Chem Theory Comput; 2020 Jul; 16(7):4706-4725. PubMed ID: 32492340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
    Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L
    Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37.
    Keramisanou D; Aboalroub A; Zhang Z; Liu W; Marshall D; Diviney A; Larsen RW; Landgraf R; Gelis I
    Mol Cell; 2016 Apr; 62(2):260-271. PubMed ID: 27105117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery.
    Miyata Y
    Cell Mol Life Sci; 2009 Jun; 66(11-12):1840-9. PubMed ID: 19387550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Biomolecular Interaction Between the Molecular Chaperone Hsp90 and Its Client Protein Kinase Cdc37 using Field-Effect Biosensing Technology.
    Lerner Y; Sukumaran S; Chua MS; So SK; Qvit N
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation.
    Bachman AB; Keramisanou D; Xu W; Beebe K; Moses MA; Vasantha Kumar MV; Gray G; Noor RE; van der Vaart A; Neckers L; Gelis I
    Nat Commun; 2018 Jan; 9(1):265. PubMed ID: 29343704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone.
    Stetz G; Tse A; Verkhivker GM
    PLoS One; 2017; 12(11):e0186089. PubMed ID: 29095844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.
    Verba KA; Agard DA
    Trends Biochem Sci; 2017 Oct; 42(10):799-811. PubMed ID: 28784328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy.
    Sreeramulu S; Jonker HR; Langer T; Richter C; Lancaster CR; Schwalbe H
    J Biol Chem; 2009 Feb; 284(6):3885-96. PubMed ID: 19073599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37.
    Vaughan CK; Mollapour M; Smith JR; Truman A; Hu B; Good VM; Panaretou B; Neckers L; Clarke PA; Workman P; Piper PW; Prodromou C; Pearl LH
    Mol Cell; 2008 Sep; 31(6):886-95. PubMed ID: 18922470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.
    Li R; Yuan F; Fu W; Zhang L; Zhang N; Wang Y; Ma K; Li X; Wang L; Zhu WG; Zhao Y
    J Biol Chem; 2017 Feb; 292(7):2830-2841. PubMed ID: 28073914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.