These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2947888)

  • 1. A modified screen for the detection of cell wall-acting antifungal compounds.
    Kirsch DR; Lai MH
    J Antibiot (Tokyo); 1986 Nov; 39(11):1620-2. PubMed ID: 2947888
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of novel cell-wall active antifungal compounds.
    St George S; Selitrennikoff CP
    Int J Antimicrob Agents; 2006 Oct; 28(4):361-5. PubMed ID: 16956748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. III. Biological properties of 15G256 gamma.
    Albaugh D; Albert G; Bradford P; Cotter V; Froyd J; Gaughran J; Kirsch DR; Lai M; Rehnig A; Sieverding E; Silverman S
    J Antibiot (Tokyo); 1998 Mar; 51(3):317-22. PubMed ID: 9589067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a temperature-sensitive, protoplast-forming Neurospora crassa strain for the detection of antifungal antibiotics.
    Selitrennikoff CP
    Antimicrob Agents Chemother; 1983 May; 23(5):757-65. PubMed ID: 6223580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro studies on mode of action of antifungal 8.O.4'-neolignans occurring in certain species of Virola and related genera of Myristicaceae.
    Zacchino S; Rodríguez G; Santecchia C; Pezzenati G; Giannini F; Enriz R
    J Ethnopharmacol; 1998 Aug; 62(1):35-41. PubMed ID: 9720609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro antifungal evaluation and studies on the mode of action of xanthoxyline derivatives.
    Pinheiro TR; Yunes RA; López SN; Santecchia CB; Zacchino SA; Cechinel Filho V
    Arzneimittelforschung; 1999 Dec; 49(12):1039-43. PubMed ID: 10635452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan.
    Aranda-Martinez A; Lopez-Moya F; Lopez-Llorca LV
    J Basic Microbiol; 2016 Oct; 56(10):1059-1070. PubMed ID: 27259000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high throughput screen for inhibitors of fungal cell wall synthesis.
    Evans JM; Zaworski PG; Parker CN
    J Biomol Screen; 2002 Aug; 7(4):359-66. PubMed ID: 12230890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of Neurospora crassa to a marine-derived Aspergillus tubingensis anhydride exhibiting antifungal activity that is mediated by the MAS1 protein.
    Koch L; Lodin A; Herold I; Ilan M; Carmeli S; Yarden O
    Mar Drugs; 2014 Sep; 12(9):4713-31. PubMed ID: 25257783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-based screening for the discovery of novel antifungals.
    Kirsch DR; DiDomenico BJ
    Biotechnology; 1994; 26():177-221. PubMed ID: 7749303
    [No Abstract]   [Full Text] [Related]  

  • 11. Antifungal properties of novel N- and alpha,beta-substituted succinimides against dermatophytes.
    López SN; Sortino M; Escalante A; de Campos F; Corrêa R; Cechinel Filho V; Nunes RJ; Zacchino SA
    Arzneimittelforschung; 2003; 53(4):280-8. PubMed ID: 12785125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LY121019 inhibits Neurospora crassa growth and (1-3)-beta-D-glucan synthase.
    Taft CS; Selitrennikoff CP
    J Antibiot (Tokyo); 1988 May; 41(5):697-701. PubMed ID: 2968332
    [No Abstract]   [Full Text] [Related]  

  • 13. [Antifungal activity of 5-benzilidene pyrrolone and furanone derivatives].
    de Carvalho MG; Pitta Ida R; Galdino SL; Takaki Gde C; Bergé G
    Ann Pharm Fr; 1989; 47(6):376-82. PubMed ID: 2535109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner.
    Palma-Guerrero J; Huang IC; Jansson HB; Salinas J; Lopez-Llorca LV; Read ND
    Fungal Genet Biol; 2009 Aug; 46(8):585-94. PubMed ID: 19389478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens.
    Lopez-Moya F; Colom-Valiente MF; Martinez-Peinado P; Martinez-Lopez JE; Puelles E; Sempere-Ortells JM; Lopez-Llorca LV
    Fungal Biol; 2015 Mar; 119(2-3):154-69. PubMed ID: 25749367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel cell wall destabilizing antifungal compounds using a conditional Aspergillus nidulans protein kinase C mutant.
    Mircus G; Hagag S; Levdansky E; Sharon H; Shadkchan Y; Shalit I; Osherov N
    J Antimicrob Chemother; 2009 Oct; 64(4):755-63. PubMed ID: 19648579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26.
    Alexander AJT; Muñoz A; Marcos JF; Read ND
    Mol Microbiol; 2020 Oct; 114(4):521-535. PubMed ID: 32898933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-benzylidene pyrrolones. IV--Synthesis and antifungal activity of some 5-benzylidene derivatives of 1,2-dimethyl-3-carbethoxy-pyrrol-4-one.
    Higino JS; Lins-Galdino S; Da Rocha-Pitta I; De Lima JG; Luu-Duc C
    Farmaco; 1990 Dec; 45(12):1283-7. PubMed ID: 2151022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula.
    Bhattacharya AK; Chand HR; John J; Deshpande MV
    Eur J Med Chem; 2015 Apr; 94():1-7. PubMed ID: 25747495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor ADS-4 regulates adaptive responses and resistance to antifungal azole stress.
    Wang K; Zhang Z; Chen X; Sun X; Jin C; Liu H; Li S
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5396-404. PubMed ID: 26100701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.