These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 29478915)
21. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Van Dort CJ; Zachs DP; Kenny JD; Zheng S; Goldblum RR; Gelwan NA; Ramos DM; Nolan MA; Wang K; Weng FJ; Lin Y; Wilson MA; Brown EN Proc Natl Acad Sci U S A; 2015 Jan; 112(2):584-9. PubMed ID: 25548191 [TBL] [Abstract][Full Text] [Related]
22. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Zhao YN; Jiang JB; Tao SY; Zhang Y; Chen ZK; Qu WM; Huang ZL; Yang SR Nat Commun; 2022 Dec; 13(1):7552. PubMed ID: 36477665 [TBL] [Abstract][Full Text] [Related]
23. Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus. Methippara MM; Alam MN; Szymusiak R; McGinty D Brain Res; 2003 Jan; 960(1-2):165-73. PubMed ID: 12505669 [TBL] [Abstract][Full Text] [Related]
24. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. Anaclet C; De Luca R; Venner A; Malyshevskaya O; Lazarus M; Arrigoni E; Fuller PM J Neurosci; 2018 May; 38(22):5168-5181. PubMed ID: 29735555 [TBL] [Abstract][Full Text] [Related]
25. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Weber F; Hoang Do JP; Chung S; Beier KT; Bikov M; Saffari Doost M; Dan Y Nat Commun; 2018 Jan; 9(1):354. PubMed ID: 29367602 [TBL] [Abstract][Full Text] [Related]
26. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Hayashi Y; Kashiwagi M; Yasuda K; Ando R; Kanuka M; Sakai K; Itohara S Science; 2015 Nov; 350(6263):957-61. PubMed ID: 26494173 [TBL] [Abstract][Full Text] [Related]
27. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves. Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651 [TBL] [Abstract][Full Text] [Related]
28. [The Function of REM Sleep: Implications from Transgenic Mouse Models]. Kashiwagi M; Hayashi Y Brain Nerve; 2016 Oct; 68(10):1205-1211. PubMed ID: 27703108 [TBL] [Abstract][Full Text] [Related]
29. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375 [TBL] [Abstract][Full Text] [Related]
30. Widely Distributed Neurotensinergic Neurons in the Brainstem Regulate NREM Sleep in Mice. Kashiwagi M; Kanuka M; Tatsuzawa C; Suzuki H; Morita M; Tanaka K; Kawano T; Shin JW; Suzuki H; Itohara S; Yanagisawa M; Hayashi Y Curr Biol; 2020 Mar; 30(6):1002-1010.e4. PubMed ID: 32032507 [TBL] [Abstract][Full Text] [Related]
31. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Lu HC; Pollack H; Lefante JJ; Mills AA; Tian D Sleep; 2019 Mar; 42(3):. PubMed ID: 30541142 [TBL] [Abstract][Full Text] [Related]
32. Hypothalamic regulation of sleep and arousal. McGinty D; Szymusiak R Front Biosci; 2003 Sep; 8():s1074-83. PubMed ID: 12957869 [TBL] [Abstract][Full Text] [Related]
33. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Zhang Z; Zhong P; Hu F; Barger Z; Ren Y; Ding X; Li S; Weber F; Chung S; Palmiter RD; Dan Y Cell; 2019 May; 177(5):1293-1307.e16. PubMed ID: 31031008 [TBL] [Abstract][Full Text] [Related]
34. Sleep and the hypothalamus. Adamantidis AR; de Lecea L Science; 2023 Oct; 382(6669):405-412. PubMed ID: 37883555 [TBL] [Abstract][Full Text] [Related]
35. Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Zhong P; Zhang Z; Barger Z; Ma C; Liu D; Ding X; Dan Y Neuron; 2019 Nov; 104(4):795-809.e6. PubMed ID: 31582313 [TBL] [Abstract][Full Text] [Related]
36. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. Maurer JJ; Lin A; Jin X; Hong J; Sathi N; Cardis R; Osorio-Forero A; Lüthi A; Weber F; Chung S Elife; 2024 Jun; 12():. PubMed ID: 38884573 [TBL] [Abstract][Full Text] [Related]
37. Hypothalamic hypocretinergic/orexinergic neurons projecting to the oral pontine rapid eye movement sleep inducing site in the cat. García-García B; Reinoso-Suárez F; Rodrigo-Angulo ML Anat Rec (Hoboken); 2013 May; 296(5):815-21. PubMed ID: 23564722 [TBL] [Abstract][Full Text] [Related]
38. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow waves during REM sleep in mice. Nazari M; Karimi Abadchi J; Naghizadeh M; Bermudez-Contreras EJ; McNaughton BL; Tatsuno M; Mohajerani MH Cell Rep; 2023 May; 42(5):112450. PubMed ID: 37126447 [TBL] [Abstract][Full Text] [Related]
39. Preoptic hypothalamic warming suppresses laryngeal dilator activity during sleep. McGinty D; Metes A; Alam MN; Megirian D; Stewart D; Szymusiak R Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1129-37. PubMed ID: 14988083 [TBL] [Abstract][Full Text] [Related]
40. Preoptic/anterior hypothalamic neurons: thermosensitivity in rapid eye movement sleep. Alam MN; McGinty D; Szymusiak R Am J Physiol; 1995 Nov; 269(5 Pt 2):R1250-7. PubMed ID: 7503317 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]