BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29479302)

  • 1. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.
    Jean-Xavier C; Perreault MC
    Front Neurosci; 2018; 12():53. PubMed ID: 29479302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential origin of reticulospinal drive to motoneurons innervating trunk and hindlimb muscles in the mouse revealed by optical recording.
    Szokol K; Glover JC; Perreault MC
    J Physiol; 2008 Nov; 586(21):5259-76. PubMed ID: 18772205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT
    Flaive A; Cabelguen JM; Ryczko D
    J Neurophysiol; 2020 Jun; 123(6):2326-2342. PubMed ID: 32401145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brainstem Steering of Locomotor Activity in the Newborn Rat.
    Oueghlani Z; Simonnet C; Cardoit L; Courtand G; Cazalets JR; Morin D; Juvin L; Barrière G
    J Neurosci; 2018 Aug; 38(35):7725-7740. PubMed ID: 30037828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat.
    Cazalets JR; Borde M; Clarac F
    J Neurosci; 1995 Jul; 15(7 Pt 1):4943-51. PubMed ID: 7623124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossed activation of thoracic trunk motoneurons by medullary reticulospinal neurons.
    LaPallo BK; Giorgi A; Perreault MC
    J Neurophysiol; 2019 Dec; 122(6):2601-2613. PubMed ID: 31664872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
    Ryczko D; Charrier V; Ijspeert A; Cabelguen JM
    J Neurophysiol; 2010 Nov; 104(5):2677-92. PubMed ID: 20810687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion.
    Boulain M; Khsime I; Sourioux M; Thoby-Brisson M; Barrière G; Simmers J; Morin D; Juvin L
    J Physiol; 2021 Oct; 599(19):4477-4496. PubMed ID: 34412148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor Pattern and Force Generation Modulated by Ionic Channels: A Computational Study of Spinal Networks Underlying Locomotion.
    Zhang Q; Cheng Y; Zhou M; Dai Y
    Front Comput Neurosci; 2022; 16():809599. PubMed ID: 35493855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental patterns of vestibular-mediated synaptic inputs to axial and limb motoneurons in the neonatal mouse assessed by optical recording.
    Kasumacic N; Glover JC; Perreault MC
    J Physiol; 2010 Dec; 588(Pt 24):4905-25. PubMed ID: 20962007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of respiratory network activity by forelimb and hindlimb locomotor generators.
    Le Gal JP; Colnot E; Cardoit L; Bacqué-Cazenave J; Thoby-Brisson M; Juvin L; Morin D
    Eur J Neurosci; 2020 Aug; 52(4):3181-3195. PubMed ID: 32150780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse.
    Sivertsen MS; Glover JC; Perreault MC
    J Neurophysiol; 2014 Oct; 112(7):1628-43. PubMed ID: 24944221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle.
    Yakovenko S; Mushahwar V; VanderHorst V; Holstege G; Prochazka A
    J Neurophysiol; 2002 Mar; 87(3):1542-53. PubMed ID: 11877525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of locomotor mechanisms in the frog.
    Stehouwer DJ; Farel PB
    J Neurophysiol; 1985 Jun; 53(6):1453-66. PubMed ID: 3874268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.