These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29479564)

  • 1. Radical Trapping Study of the Relaxation of
    Davis I; Koto T; Liu A
    React Oxyg Species (Apex); 2018 Jan; 5(13):46-55. PubMed ID: 29479564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.
    Yukl ET; Williamson HR; Higgins L; Davidson VL; Wilmot CM
    Biochemistry; 2013 Dec; 52(52):9447-55. PubMed ID: 24320950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical.
    Li X; Fu R; Lee S; Krebs C; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8597-600. PubMed ID: 18562294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG.
    Geng J; Huo L; Liu A
    J Inorg Biochem; 2017 Feb; 167():60-67. PubMed ID: 27907864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing a
    Manesis AC; Slater JW; Cantave K; Martin Bollinger J; Krebs C; Rosenzweig AC
    Biochemistry; 2023 Mar; 62(5):1082-1092. PubMed ID: 36812111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Suicide Mutation Affecting Proton Transfers to High-Valent Hemes Causes Inactivation of MauG during Catalysis.
    Ma Z; Williamson HR; Davidson VL
    Biochemistry; 2016 Oct; 55(40):5738-5745. PubMed ID: 27622473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer.
    Dow BA; Davidson VL
    Biochem J; 2016 Jan; 473(1):67-72. PubMed ID: 26494530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate.
    Shin S; Lee S; Davidson VL
    Biochemistry; 2009 Oct; 48(42):10106-12. PubMed ID: 19788236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Bis-Fe
    Guchhait T; Sarkar S; Pandit YA; Rath SP
    Chemistry; 2017 Aug; 23(43):10270-10275. PubMed ID: 28558158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model.
    Geng J; Davis I; Liu A
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3692-6. PubMed ID: 25631460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG.
    Ma Z; Williamson HR; Davidson VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10896-901. PubMed ID: 26283395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.