These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29480524)

  • 1. Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis.
    Fujita T; Kitaura F; Oji A; Tanigawa N; Yuno M; Ikawa M; Taniuchi I; Fujii H
    Genes Cells; 2018 Apr; 23(4):318-325. PubMed ID: 29480524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enChIP system for the analysis of bacterial genome functions.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Jun; 11(1):387. PubMed ID: 29898790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis.
    Yuno M; Nagata S; Fujita T; Fujii H
    Biol Methods Protoc; 2021; 6(1):bpab013. PubMed ID: 34409168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enChIP system for the analysis of genome functions in budding yeast.
    Fujii H; Fujita T
    Biol Methods Protoc; 2022; 7(1):bpac025. PubMed ID: 36325175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins.
    Fujii H; Fujita T
    Int J Mol Sci; 2015 Sep; 16(9):21802-12. PubMed ID: 26370991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Biochem Biophys Res Commun; 2013 Sep; 439(1):132-6. PubMed ID: 23942116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins.
    Fujita T; Yuno M; Fujii H
    Genes Cells; 2016 Apr; 21(4):370-7. PubMed ID: 26848818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of physical interactions between genomic regions by enChIP-Seq.
    Fujita T; Yuno M; Suzuki Y; Sugano S; Fujii H
    Genes Cells; 2017 Jun; 22(6):506-520. PubMed ID: 28474362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP.
    Fujita T; Fujii H
    J Vis Exp; 2016 Jan; (107):e53478. PubMed ID: 26862718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. enChIP-Seq Analyzer: A Software Program to Analyze and Interpret enChIP-Seq Data for the Detection of Physical Interactions between Genomic Regions.
    Sarudate A; Fujita T; Nakayama T; Fujii H
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dead Cas9-sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications.
    Saifaldeen M; Al-Ansari DE; Ramotar D; Aouida M
    CRISPR J; 2021 Apr; 4(2):275-289. PubMed ID: 33876957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR.
    Fujita T; Fujii H
    PLoS One; 2014; 9(7):e103084. PubMed ID: 25051498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F; Koncz M; Eilers RE; Verschure PJ; Rots MG
    Methods Mol Biol; 2024; 2842():289-307. PubMed ID: 39012602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9.
    Cui L; Vigouroux A; Rousset F; Varet H; Khanna V; Bikard D
    Nat Commun; 2018 May; 9(1):1912. PubMed ID: 29765036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart.
    Schoger E; Carroll KJ; Iyer LM; McAnally JR; Tan W; Liu N; Noack C; Shomroni O; Salinas G; Groß J; Herzog N; Doroudgar S; Bassel-Duby R; Zimmermann WH; Zelarayán LC
    Circ Res; 2020 Jan; 126(1):6-24. PubMed ID: 31730408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reverse chromatin immunoprecipitation technique based on the CRISPR-dCas9 system.
    Wang Z; He Z; Liu Z; Qu M; Gao C; Wang C; Wang Y
    Plant Physiol; 2023 Mar; 191(3):1505-1519. PubMed ID: 36305686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPR Interference Platform for Efficient Genetic Repression in
    Wensing L; Sharma J; Uthayakumar D; Proteau Y; Chavez A; Shapiro RS
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.