BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 29480562)

  • 1. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen.
    Teixeira BN; Aprile P; Mendonça RH; Kelly DJ; Thiré RMDSM
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):37-49. PubMed ID: 29480562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide.
    Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B
    Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells.
    Li Q; Sun L; Zhang L; Xu Z; Kang Y; Xue P
    J Biomed Mater Res A; 2018 Feb; 106(2):408-418. PubMed ID: 28971550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
    Alemán-Domínguez ME; Giusto E; Ortega Z; Tamaddon M; Benítez AN; Liu C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):521-528. PubMed ID: 29717804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold.
    Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z
    Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering.
    Xu Z; Wang N; Liu P; Sun Y; Wang Y; Fei F; Zhang S; Zheng J; Han B
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31810169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration.
    Ghorbani F; Kim M; Ghalandari B; Zhang M; Varma SN; Schöbel L; Liu C; Boccaccini AR
    Acta Biomater; 2024 Jun; 181():188-201. PubMed ID: 38642788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel-inspired polydopamine induced the osteoinductivity to ice-templating PLGA-gelatin matrix for bone tissue engineering application.
    Rezaei H; Shahrezaee M; Jalali Monfared M; Ghorbani F; Zamanian A; Sahebalzamani M
    Biotechnol Appl Biochem; 2021 Feb; 68(1):185-196. PubMed ID: 32248561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.
    Ko E; Yang K; Shin J; Cho SW
    Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering.
    Ashwin B; Abinaya B; Prasith TP; Chandran SV; Yadav LR; Vairamani M; Patil S; Selvamurugan N
    Int J Biol Macromol; 2020 Nov; 162():523-532. PubMed ID: 32569692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration.
    Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L
    Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuumed collagen-impregnated bioglass scaffolds: Characterization and influence on proliferation and differentiation of bone marrow stromal cells.
    Kido HW; Gabbai-Armelin PR; Avanzi IR; da Silva AC; Fernandes KR; Fortulan CA; Rennó ACM
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):211-222. PubMed ID: 29569333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning.
    Granados-Hernández MV; Serrano-Bello J; Montesinos JJ; Alvarez-Gayosso C; Medina-Velázquez LA; Alvarez-Fregoso O; Alvarez-Perez MA
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2435-2446. PubMed ID: 29193687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 3D printed polylactide scaffolds with surface grafted hydrogel coatings.
    Kowalczyk P; Trzaskowska P; Łojszczyk I; Podgórski R; Ciach T
    Colloids Surf B Biointerfaces; 2019 Jul; 179():136-142. PubMed ID: 30954014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.