BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 29480910)

  • 1. Assessing AMBER force fields for protein folding in an implicit solvent.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Mar; 20(10):7206-7216. PubMed ID: 29480910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Updated Test of AMBER Force Fields and Implicit Solvent Models in Predicting the Secondary Structure of Helical, β-Hairpin, and Intrinsically Disordered Peptides.
    Maffucci I; Contini A
    J Chem Theory Comput; 2016 Feb; 12(2):714-27. PubMed ID: 26784558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set.
    Robinson MK; Monroe JI; Shell MS
    J Chem Theory Comput; 2016 Nov; 12(11):5631-5642. PubMed ID: 27731628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations.
    Perez A; MacCallum JL; Brini E; Simmerling C; Dill KA
    J Chem Theory Comput; 2015 Oct; 11(10):4770-9. PubMed ID: 26574266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.
    Lee KH; Chen J
    J Comput Chem; 2017 Jun; 38(16):1332-1341. PubMed ID: 28397268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force field influences in beta-hairpin folding simulations.
    Lwin TZ; Luo R
    Protein Sci; 2006 Nov; 15(11):2642-55. PubMed ID: 17075138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of implicit solvent models on the folding simulation of the GB1 peptide.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2009 May; 130(19):195104. PubMed ID: 19466868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding thermodynamics of β-hairpins studied by replica-exchange molecular dynamics simulations.
    Zerze GH; Uz B; Mittal J
    Proteins; 2015 Jul; 83(7):1307-15. PubMed ID: 25973961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Well Can Implicit Solvent Simulations Explore Folding Pathways? A Quantitative Analysis of α-Helix Bundle Proteins.
    Shao Q; Zhu W
    J Chem Theory Comput; 2017 Dec; 13(12):6177-6190. PubMed ID: 29120630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18410-18419. PubMed ID: 29946610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test on peptide stability of AMBER force fields with implicit solvation.
    Shell MS; Ritterson R; Dill KA
    J Phys Chem B; 2008 Jun; 112(22):6878-86. PubMed ID: 18471007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic Peptide Folding Simulations Reveal Interplay of Entropy and Long-Range Interactions in Folding Cooperativity.
    Chen J; Liu X; Chen J
    Sci Rep; 2018 Sep; 8(1):13668. PubMed ID: 30209295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the generalized Born surface area model to fold proteins yields more effective sampling while qualitatively preserving the folding landscape.
    Tao P; Xiao Y
    Phys Rev E; 2020 Jun; 101(6-1):062417. PubMed ID: 32688556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding.
    Kamenik AS; Handle PH; Hofer F; Kahler U; Kraml J; Liedl KR
    J Chem Phys; 2020 Nov; 153(18):185102. PubMed ID: 33187403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective enhanced sampling in dihedral energy facilitates overcoming the dihedral energy increase in protein folding and accelerates the searching for protein native structure.
    Shao Q; Yang L; Zhu W
    Phys Chem Chem Phys; 2019 May; 21(20):10423-10435. PubMed ID: 31066393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring protein native states and large-scale conformational changes with a modified generalized born model.
    Onufriev A; Bashford D; Case DA
    Proteins; 2004 May; 55(2):383-94. PubMed ID: 15048829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation.
    Kim E; Jang S; Pak Y
    J Chem Phys; 2007 Oct; 127(14):145104. PubMed ID: 17935448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct folding simulation of helical proteins using an effective polarizable bond force field.
    Duan L; Zhu T; Ji C; Zhang Q; Zhang JZH
    Phys Chem Chem Phys; 2017 Jun; 19(23):15273-15284. PubMed ID: 28569909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.