These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29481034)

  • 1. Enhancing the Photovoltage of Ni/ n-Si Photoanode for Water Oxidation through a Rapid Thermal Process.
    Li S; She G; Chen C; Zhang S; Mu L; Guo X; Shi W
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8594-8598. PubMed ID: 29481034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation.
    Yao T; Chen R; Li J; Han J; Qin W; Wang H; Shi J; Fan F; Li C
    J Am Chem Soc; 2016 Oct; 138(41):13664-13672. PubMed ID: 27653158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes.
    Li S; She G; Xu J; Zhang S; Zhang H; Mu L; Ge C; Jin K; Luo J; Shi W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39092-39097. PubMed ID: 32805824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation.
    Kenney MJ; Gong M; Li Y; Wu JZ; Feng J; Lanza M; Dai H
    Science; 2013 Nov; 342(6160):836-40. PubMed ID: 24233719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon Photoanodes Partially Covered by Ni@Ni(OH)
    Xu G; Xu Z; Shi Z; Pei L; Yan S; Gu Z; Zou Z
    ChemSusChem; 2017 Jul; 10(14):2897-2903. PubMed ID: 28586139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Interface-cascading Silicon Photoanode with Strengthened Built-in Electric Field and Enriched Surface Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting.
    Yin Z; Zhang K; Shi Y; Wang Y; Shen S
    Chemistry; 2024 Mar; 30(15):e202303895. PubMed ID: 38198245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage.
    Cui W; Wu S; Chen F; Xia Z; Li Y; Zhang XH; Song T; Lee ST; Sun B
    ACS Nano; 2016 Oct; 10(10):9411-9419. PubMed ID: 27617584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation.
    Cai Q; Hong W; Jian C; Liu W
    Nanoscale; 2020 Apr; 12(14):7550-7556. PubMed ID: 32227016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Silicon Photoanode Enhanced by Gold Nanoparticles for Efficient Water Oxidation.
    Hong W; Cai Q; Ban R; He X; Jian C; Li J; Li J; Liu W
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6262-6268. PubMed ID: 29384361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111).
    Chen Q; Switzer JA
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21365-21371. PubMed ID: 29856594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation.
    He L; Zhou W; Hong L; Wei D; Wang G; Shi X; Shen S
    J Phys Chem Lett; 2019 May; 10(9):2278-2285. PubMed ID: 31002523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon Photoanode Modified with Work-function-tuned Ni@Fe
    Liu D; Jiang T; Liu D; Zhang W; Qin H; Yan S; Zou Z
    ChemSusChem; 2020 Nov; 13(22):6037-6044. PubMed ID: 33022839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation.
    Li F; Li Y; Zhuo Q; Zhou D; Zhao Y; Zhao Z; Wu X; Shan Y; Sun L
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11479-11488. PubMed ID: 32056436
    [No Abstract]   [Full Text] [Related]  

  • 16. An n-Si/n-Fe2O3 heterojunction tandem photoanode for solar water splitting.
    van de Krol R; Liang Y
    Chimia (Aarau); 2013; 67(3):168-71. PubMed ID: 23574957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation.
    Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation.
    Hill JC; Landers AT; Switzer JA
    Nat Mater; 2015 Nov; 14(11):1150-5. PubMed ID: 26366847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and Removing the Interfacial States in Metal-Oxide-Semiconductor Schottky Si Photoanodes for the Highest Fill Factor.
    Ma J; Chi H; Wang A; Wang P; Jing H; Yao T; Li C
    J Am Chem Soc; 2022 Sep; 144(38):17540-17548. PubMed ID: 36103140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.
    Digdaya IA; Adhyaksa GWP; Trześniewski BJ; Garnett EC; Smith WA
    Nat Commun; 2017 Jun; 8():15968. PubMed ID: 28660883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.