These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29481083)

  • 1. Origin of Stereocontrol in Photoredox Organocatalysis of Asymmetric α-Functionalizations of Aldehydes.
    Li M; Sang Y; Xue XS; Cheng JP
    J Org Chem; 2018 Mar; 83(6):3333-3338. PubMed ID: 29481083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes.
    Nicewicz DA; MacMillan DW
    Science; 2008 Oct; 322(5898):77-80. PubMed ID: 18772399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis.
    Shih HW; Vander Wal MN; Grange RL; MacMillan DW
    J Am Chem Soc; 2010 Oct; 132(39):13600-3. PubMed ID: 20831195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining Anomalies in Enamine Catalysis: "Downstream Species" as a New Paradigm for Stereocontrol.
    Burés J; Armstrong A; Blackmond DG
    Acc Chem Res; 2016 Feb; 49(2):214-22. PubMed ID: 26830669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective alpha-trifluoromethylation of aldehydes via photoredox organocatalysis.
    Nagib DA; Scott ME; MacMillan DW
    J Am Chem Soc; 2009 Aug; 131(31):10875-7. PubMed ID: 19722670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals.
    Le Saux E; Ma D; Bonilla P; Holden CM; Lustosa D; Melchiorre P
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5357-5362. PubMed ID: 33283919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes
    Yang X; Xie Z; Li Y; Zhang Y
    Chem Sci; 2020 Apr; 11(18):4741-4746. PubMed ID: 34122929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes.
    Gualandi A; Calogero F; Martinelli A; Quintavalla A; Marchini M; Ceroni P; Lombardo M; Cozzi PG
    Dalton Trans; 2020 Oct; 49(41):14497-14505. PubMed ID: 33045035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merger of Visible Light-Driven Chiral Organocatalysis and Continuous Flow Chemistry: An Accelerated and Scalable Access into Enantioselective α-Alkylation of Aldehydes.
    Molnár M; Kappe CO; Ötvös SB
    Adv Synth Catal; 2023 May; 365(10):1660-1670. PubMed ID: 38515505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral primary-amine-catalyzed conjugate addition to α-substituted vinyl ketones/aldehydes: divergent stereocontrol modes on enamine protonation.
    Fu N; Zhang L; Luo S; Cheng JP
    Chemistry; 2013 Nov; 19(46):15669-81. PubMed ID: 24114835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Enantioselective Radical Transformations Enabled by Visible Light.
    Saha D
    Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Designed Approach to Enantiodivergent Enamine Catalysis.
    Macharia J; Wambua V; Hong Y; Harris L; Hirschi JS; Evans GB; Vetticatt MJ
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8756-8760. PubMed ID: 28544165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design.
    Wheeler SE; Seguin TJ; Guan Y; Doney AC
    Acc Chem Res; 2016 May; 49(5):1061-9. PubMed ID: 27110641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones.
    Bourboula A; Limnios D; Kokotou MG; Mountanea OG; Kokotos G
    Molecules; 2019 May; 24(11):. PubMed ID: 31159242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Asymmetric Radical Functionalization of Aldehydes Enabled by a Redox Shuttle.
    Mazzarella D; Qi C; Vanzella M; Sartorel A; Pelosi G; Dell'Amico L
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202401361. PubMed ID: 38623693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective organo-cascade catalysis.
    Huang Y; Walji AM; Larsen CH; MacMillan DW
    J Am Chem Soc; 2005 Nov; 127(43):15051-3. PubMed ID: 16248643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization.
    Rono LJ; Yayla HG; Wang DY; Armstrong MF; Knowles RR
    J Am Chem Soc; 2013 Nov; 135(47):17735-8. PubMed ID: 24215561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Hydroaminoalkylation of Alkenylazaarenes via Cooperative Photoredox and Chiral Hydrogen-Bonding Catalysis.
    Chai X; Hu X; Zhao X; Yin Y; Cao S; Jiang Z
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202115110. PubMed ID: 35001449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diarylprolinol silyl ether system: a general organocatalyst.
    Jensen KL; Dickmeiss G; Jiang H; Albrecht L; Jørgensen KA
    Acc Chem Res; 2012 Feb; 45(2):248-64. PubMed ID: 21848275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.