BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29481085)

  • 21. A study of metalloporphyrin-polynucleotide interactions by microcalorimetry and circular dichroism.
    Wheeler G; Miskovsky P; Jancura D; Chinsky L
    J Biomol Struct Dyn; 1998 Apr; 15(5):967-85. PubMed ID: 9619518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and photophysical evaluation of a pyridinium 4-amino-1,8-naphthalimide derivative that upon intercalation displays preference for AT-rich double-stranded DNA.
    Banerjee S; Kitchen JA; Gunnlaugsson T; Kelly JM
    Org Biomol Chem; 2012 Apr; 10(15):3033-43. PubMed ID: 22395853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-covalent versus covalent control of self-assembly and chirality of Nile red-modified nucleoside and DNA.
    Varghese R; Wagenknecht HA
    Chemistry; 2010 Aug; 16(30):9040-6. PubMed ID: 20645354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of DNA-porphyrin interactions.
    Nitta Y; Kuroda R
    Biopolymers; 2006 Apr; 81(5):376-91. PubMed ID: 16358258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding modes of V(=O)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to various synthetic DNAs studied by polarized spectroscopy.
    Park TG; Ko JH; Ryoo AY; Kim JM; Cho DW; Kim SK
    Biochim Biophys Acta; 2006 Mar; 1760(3):388-94. PubMed ID: 16386850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides.
    Khan AY; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():417-25. PubMed ID: 26241827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A kinetic analysis of cyanine selectivity: CCyan2 and Cyan40 intercalation into poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC).
    Biver T; Pulzonetti M; Secco F; Venturini M; Yarmoluk S
    Arch Biochem Biophys; 2006 Jul; 451(2):103-11. PubMed ID: 16781658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of a styryl dye binding mode with calf thymus DNA in vesicular medium: from minor groove to intercalative.
    Manna A; Chakravorti S
    J Phys Chem B; 2012 May; 116(17):5226-33. PubMed ID: 22506549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Syntheses and DNA-binding studies of a series of unsymmetrical cyanine dyes: structural influence on the degree of minor groove binding to natural DNA.
    Karlsson HJ; Bergqvist MH; Lincoln P; Westman G
    Bioorg Med Chem; 2004 May; 12(9):2369-84. PubMed ID: 15080934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysing DNA complexes by circular and linear dichroism.
    Nordén B; Kurucsev T
    J Mol Recognit; 1994 Jun; 7(2):141-55. PubMed ID: 7826674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic studies of the multiple binding modes of a trimethine-bridged cyanine dye with DNA.
    Sovenyhazy KM; Bordelon JA; Petty JT
    Nucleic Acids Res; 2003 May; 31(10):2561-9. PubMed ID: 12736305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quest for mode of binding of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide with calf thymus DNA.
    Sahoo D; Bhattacharya P; Chakravorti S
    J Phys Chem B; 2010 Feb; 114(5):2044-50. PubMed ID: 20088531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substituent effects on the assembly of helical cyanine dye aggregates in the minor groove of a DNA template.
    Stadler AL; Renikuntla BR; Yaron D; Fang AS; Armitage BA
    Langmuir; 2011 Feb; 27(4):1472-9. PubMed ID: 21174432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Hoechst 33258 covalent dimer covers a total turn of the double-stranded DNA.
    Streltsov SA; Gromyko AV; Oleinikov VA; Zhuze AL
    J Biomol Struct Dyn; 2006 Dec; 24(3):285-302. PubMed ID: 17054387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of Hoechst 33258 and its derivatives to DNA.
    Bazhulina NP; Nikitin AM; Rodin SA; Surovaya AN; Kravatsky YV; Pismensky VF; Archipova VS; Martin R; Gursky GV
    J Biomol Struct Dyn; 2009 Jun; 26(6):701-18. PubMed ID: 19385699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous binding of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin and 4',6-diamidino-2-phenylindole at the minor grooves of poly(dA).poly(dT) and poly[d(A-T)(2)]: fluorescence resonance energy transfer between DNA bound drugs.
    Jin B; Lee HM; Lee YA; Ko JH; Kim C; Kim SK
    J Am Chem Soc; 2005 Mar; 127(8):2417-24. PubMed ID: 15724996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of cyanine dye structure on self-aggregation and interaction with nucleic acids: a kinetic approach to TO and BO binding.
    Biver T; Boggioni A; Secco F; Turriani E; Venturini M; Yarmoluk S
    Arch Biochem Biophys; 2007 Sep; 465(1):90-100. PubMed ID: 17543269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves.
    Ogulchansky TY; Losytskyy MY; Kovalska VB; Lukashov SS; Yashchuk VM; Yarmoluk SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Nov; 57(13):2705-15. PubMed ID: 11765797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base specific complex formation of norfloxacin with DNA.
    Son GS; Yeo JA; Kim JM; Kim SK; Moon HR; Nam W
    Biophys Chem; 1998 Sep; 74(3):225-36. PubMed ID: 9779583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of DNA binding modes for a symmetrical cyanine dye trication: effect of DNA sequence and structure.
    Cao R; Venezia CF; Armitage BA
    J Biomol Struct Dyn; 2001 Jun; 18(6):844-56. PubMed ID: 11444373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.