These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29481093)

  • 1. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.
    Yu W; Duan Z; Zhang G; Liu C; Fan S
    Nano Lett; 2018 Mar; 18(3):1770-1776. PubMed ID: 29481093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.
    Zhang G; Jiang S; Yao W; Liu C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31202-31211. PubMed ID: 27791353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes.
    Cohen Y; Reddy SK; Ben-Shimon Y; Ya'akobovitz A
    Nanotechnology; 2019 Dec; 30(50):505705. PubMed ID: 31491776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hard Carbon Nanotube Sponges for Highly Efficient Cooling
    Yu W; Zhang G; Liu C; Fan S
    ACS Nano; 2020 Oct; 14(10):14091-14099. PubMed ID: 33044055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity.
    Fu Y; Nabiollahi N; Wang T; Wang S; Hu Z; Carlberg B; Zhang Y; Wang X; Liu J
    Nanotechnology; 2012 Feb; 23(4):045304. PubMed ID: 22222357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Aluminum⁻Vertically-Aligned Carbon Nanotube Forests Composites for Heat Dissipation.
    Li YR; Su CC; Chang SH
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31108887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K
    Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water.
    Chen J; Walther JH; Koumoutsakos P
    Nanotechnology; 2016 Nov; 27(46):465705. PubMed ID: 27758979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a Carbon Nanotube Additive on the Corrosion-Resistance and Heat-Dissipation Properties of Plasma Electrolytic Oxidation on AZ31 Magnesium Alloy.
    Hwang M; Chung W
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An instrument for evaluation of performance of heat dissipative coatings.
    Suryawanshi CN; Kim T; Lin CT
    Rev Sci Instrum; 2010 Mar; 81(3):035105. PubMed ID: 20370211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat dissipation for microprocessor using multiwalled carbon nanotubes based liquid.
    Hung Thang B; Trinh PV; Chuc NV; Khoi PH; Minh PN
    ScientificWorldJournal; 2013; 2013():305957. PubMed ID: 24453829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat transfer of graphene foams and carbon nanotube forests under forced convection.
    Cohen Y; Reddy SK; Ya'akobovitz A
    Nanotechnology; 2022 Jun; 33(34):. PubMed ID: 34325410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation.
    Li Y; Song Y; Zu H; Zhang F; Yang H; Dai W; Meng J; Jiang L
    Exploration (Beijing); 2024 Jun; 4(3):20230085. PubMed ID: 38939859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene.
    Kung F; Yang MC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TSV-integrated thermoelectric cooling by holey silicon for hot spot thermal management.
    Ren Z; Yu Z; Kim JC; Lee J
    Nanotechnology; 2019 Jan; 30(3):035201. PubMed ID: 30418957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.
    Tsai WY; Huang GR; Wang KK; Chen CF; Huang JC
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascaded Heteroporous Nanocomposites for Thermo-Adaptive Passive Radiation Cooling.
    Tang W; Zhan Y; Yang J; Meng X; Zhu X; Li Y; Lin T; Jiang L; Zhao Z; Wang S
    Adv Mater; 2024 Sep; 36(36):e2310923. PubMed ID: 39075820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Ambient Temperature on Radiative and Convective Heat Dissipation Ratio in Polymer Heat Sinks.
    Kominek J; Zachar M; Guzej M; Bartuli E; Kotrbacek P
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film.
    Qiu L; Wang X; Su G; Tang D; Zheng X; Zhu J; Wang Z; Norris PM; Bradford PD; Zhu Y
    Sci Rep; 2016 Feb; 6():21014. PubMed ID: 26880221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.
    Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.