BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29481095)

  • 21. MD-TSPC4: Computational Method for Predicting the Thermal Stability of I-Motif.
    Shamim A; Razzaq M; Kim KK
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors.
    Ahmed S; Kaushik M; Chaudhary S; Kukreti S
    Int J Biol Macromol; 2018 May; 111():455-461. PubMed ID: 29329816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and electrochemical response of DNA functionalized 2nm gold nanoparticles confined in a nanochannel array.
    Peinetti AS; Ceretti H; Mizrahi M; González GA; Ramírez SA; Requejo FG; Montserrat JM; Battaglini F
    Bioelectrochemistry; 2018 Jun; 121():169-175. PubMed ID: 29454941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution equilibria of cytosine- and guanine-rich sequences near the promoter region of the n-myc gene that contain stable hairpins within lateral loops.
    Benabou S; Ferreira R; Aviñó A; González C; Lyonnais S; Solà M; Eritja R; Jaumot J; Gargallo R
    Biochim Biophys Acta; 2014 Jan; 1840(1):41-52. PubMed ID: 24012973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescent probe for proton-coupled DNA folding revealing slow exchange of i-motif and duplex structures.
    Mata G; Luedtke NW
    J Am Chem Soc; 2015 Jan; 137(2):699-707. PubMed ID: 25423623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of cytosine protonation to the stability of parallel DNA triple helices.
    Asensio JL; Lane AN; Dhesi J; Bergqvist S; Brown T
    J Mol Biol; 1998 Feb; 275(5):811-22. PubMed ID: 9480771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocurrent response after enzymatic treatment of DNA duplexes immobilized on gold electrodes: electrochemical discrimination of 5-methylcytosine modification in DNA.
    Yamada H; Tanabe K; Nishimoto S
    Org Biomol Chem; 2008 Jan; 6(2):272-7. PubMed ID: 18174996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions.
    Amato J; D'Aria F; Marzano S; Iaccarino N; Randazzo A; Giancola C; Pagano B
    Phys Chem Chem Phys; 2021 Jul; 23(28):15030-15037. PubMed ID: 34151914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the Nanoconfinement Effect on the Folding Pathway of
    Khamari L; Mukherjee S
    J Phys Chem Lett; 2022 Sep; 13(34):8169-8176. PubMed ID: 36005552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of the tetrameric I-motif folding of C-rich Tetrahymena telomeric sequences by hexitol nucleic acid (HNA) modifications.
    Ghezzo M; Grigoletto L; Rigo R; Herdewijn P; Groaz E; Sissi C
    Biochimie; 2023 Nov; 214(Pt A):112-122. PubMed ID: 37558081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. i-Motif DNA: structure, stability and targeting with ligands.
    Day HA; Pavlou P; Waller ZA
    Bioorg Med Chem; 2014 Aug; 22(16):4407-18. PubMed ID: 24957878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective detection of silver ions using mushroom-like polyaniline and gold nanoparticle nanocomposite-based electrochemical DNA sensor.
    Yang Y; Zhang S; Kang M; He L; Zhao J; Zhang H; Zhang Z
    Anal Biochem; 2015 Dec; 490():7-13. PubMed ID: 26292168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleic Acid i-Motif Structures in Analytical Chemistry.
    Alba JJ; Sadurní A; Gargallo R
    Crit Rev Anal Chem; 2016 Sep; 46(5):443-54. PubMed ID: 26939549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical evaluation of alternating duplex-triplex conversion effect on the anthraquinone-photoinjected hole transport through DNA duplex immobilized on a gold electrode.
    Tanabe K; Iida H; Haruna K; Kamei T; Okamoto A; Nishimoto S
    J Am Chem Soc; 2006 Jan; 128(3):692-3. PubMed ID: 16417338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical quantitation of DNA immobilized on gold.
    Steel AB; Herne TM; Tarlov MJ
    Anal Chem; 1998 Nov; 70(22):4670-7. PubMed ID: 9844566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational transitions of immobilized DNA chains driven by pH with electrochemical output.
    Meng F; Liu Y; Liu L; Li G
    J Phys Chem B; 2009 Jan; 113(4):894-6. PubMed ID: 19128018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folding- and Dynamics-Based Electrochemical DNA Sensors.
    Lai RY
    Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bright and Ionizable Cytosine Mimic for
    Karimi A; Wang K; Basran K; Copp W; Luedtke NW
    Bioconjug Chem; 2023 Jun; 34(6):972-976. PubMed ID: 37196003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential-Assisted DNA Immobilization as a Prerequisite for Fast and Controlled Formation of DNA Monolayers.
    Jambrec D; Gebala M; La Mantia F; Schuhmann W
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15064-8. PubMed ID: 26487262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the Folding Pathway of a c-MYC-Promoter-Based i-Motif DNA in Crowded Environments at the Single-Molecule Level.
    Paul S; Hossain SS; Samanta A
    J Phys Chem B; 2020 Feb; 124(5):763-770. PubMed ID: 31917565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.