These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A link model approach to identify congestion hotspots. Bassolas A; Gómez S; Arenas A R Soc Open Sci; 2022 Oct; 9(10):220894. PubMed ID: 36303943 [TBL] [Abstract][Full Text] [Related]
5. Understanding Braess' Paradox in power grids. Schäfer B; Pesch T; Manik D; Gollenstede J; Lin G; Beck HP; Witthaut D; Timme M Nat Commun; 2022 Sep; 13(1):5396. PubMed ID: 36104335 [TBL] [Abstract][Full Text] [Related]
6. Ranking in interconnected multilayer networks reveals versatile nodes. De Domenico M; Solé-Ribalta A; Omodei E; Gómez S; Arenas A Nat Commun; 2015 Apr; 6():6868. PubMed ID: 25904405 [TBL] [Abstract][Full Text] [Related]
7. Collectively optimal routing for congested traffic limited by link capacity. Danila B; Sun Y; Bassler KE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066116. PubMed ID: 20365240 [TBL] [Abstract][Full Text] [Related]
8. Navigability of interconnected networks under random failures. De Domenico M; Solé-Ribalta A; Gómez S; Arenas A Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8351-6. PubMed ID: 24912174 [TBL] [Abstract][Full Text] [Related]
9. Congestion-gradient driven transport on complex networks. Danila B; Yu Y; Earl S; Marsh JA; Toroczkai Z; Bassler KE Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046114. PubMed ID: 17155140 [TBL] [Abstract][Full Text] [Related]
10. Randomized shortest-path problems: two related models. Saerens M; Achbany Y; Fouss F; Yen L Neural Comput; 2009 Aug; 21(8):2363-404. PubMed ID: 19323635 [TBL] [Abstract][Full Text] [Related]
11. Physics of transportation: Towards optimal capacity using the multilayer network framework. Du WB; Zhou XL; Jusup M; Wang Z Sci Rep; 2016 Jan; 6():19059. PubMed ID: 26791580 [TBL] [Abstract][Full Text] [Related]
12. Effective traffic-flow assignment strategy on multilayer networks. Gao L; Shu P; Tang M; Wang W; Gao H Phys Rev E; 2019 Jul; 100(1-1):012310. PubMed ID: 31499882 [TBL] [Abstract][Full Text] [Related]
13. Optimal structure of complex networks for minimizing traffic congestion. Zhao L; Cupertino TH; Park K; Lai YC; Jin X Chaos; 2007 Dec; 17(4):043103. PubMed ID: 18163767 [TBL] [Abstract][Full Text] [Related]
14. Traffic congestion in interconnected complex networks. Tan F; Wu J; Xia Y; Tse CK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062813. PubMed ID: 25019839 [TBL] [Abstract][Full Text] [Related]
15. Controllability of multiplex, multi-time-scale networks. Pósfai M; Gao J; Cornelius SP; Barabási AL; D'Souza RM Phys Rev E; 2016 Sep; 94(3-1):032316. PubMed ID: 27739809 [TBL] [Abstract][Full Text] [Related]
16. Self avoiding paths routing algorithm in scale-free networks. Rachadi A; Jedra M; Zahid N Chaos; 2013 Mar; 23(1):013114. PubMed ID: 23556951 [TBL] [Abstract][Full Text] [Related]
17. Onset of traffic congestion in complex networks. Zhao L; Lai YC; Park K; Ye N Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026125. PubMed ID: 15783396 [TBL] [Abstract][Full Text] [Related]
18. Fermi-Dirac statistics and traffic in complex networks. de Moura AP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066114. PubMed ID: 16089827 [TBL] [Abstract][Full Text] [Related]
19. Structural reducibility of multilayer networks. De Domenico M; Nicosia V; Arenas A; Latora V Nat Commun; 2015 Apr; 6():6864. PubMed ID: 25904309 [TBL] [Abstract][Full Text] [Related]
20. Dimensionality reduction and spectral properties of multilayer networks. Sánchez-García RJ; Cozzo E; Moreno Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052815. PubMed ID: 25353852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]