These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29481218)

  • 1. Generation of Few- and Subcycle Radiation in Midinfrared-to-Deep-Ultraviolet Range During Plasma Production by Multicolor Femtosecond Pulses.
    Kostin VA; Vvedenskii NV
    Phys Rev Lett; 2018 Feb; 120(6):065002. PubMed ID: 29481218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers.
    Novoa D; Cassataro M; Travers JC; Russell PS
    Phys Rev Lett; 2015 Jul; 115(3):033901. PubMed ID: 26230794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Wakefield Driven Generation of Isolated Carrier-Envelope-Phase Tunable Intense Subcycle Pulses.
    Siminos E; Thiele I; Olofsson C
    Phys Rev Lett; 2021 Jan; 126(4):044801. PubMed ID: 33576683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-harmonic generation in solids driven by subcycle midinfrared pulses from two-color filamentation.
    Shirai H; Kumaki F; Nomura Y; Fuji T
    Opt Lett; 2018 May; 43(9):2094-2097. PubMed ID: 29714754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-State Source of Subcycle Pulses in the Midinfrared.
    Stepanov EA; Lanin AA; Voronin AA; Fedotov AB; Zheltikov AM
    Phys Rev Lett; 2016 Jul; 117(4):043901. PubMed ID: 27494472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of tunable mid- and far-infrared pulses during gas ionization by a chirped two-color laser field.
    Silaev AA; Romanov AA; Vvedenskii NV
    Opt Lett; 2020 Aug; 45(16):4527-4530. PubMed ID: 32797000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Beam Driven Generation of Frequency-Tunable Isolated Relativistic Subcycle Pulses.
    Thiele I; Siminos E; Fülöp T
    Phys Rev Lett; 2019 Mar; 122(10):104803. PubMed ID: 30932636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of intense subcycle optical pulses in a gas.
    Kida Y; Imasaka T
    Opt Express; 2015 May; 23(9):12373-81. PubMed ID: 25969322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.
    Chang HT; Zürch M; Kraus PM; Borja LJ; Neumark DM; Leone SR
    Opt Lett; 2016 Nov; 41(22):5365-5368. PubMed ID: 27842133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcycle controlled charge-directed reactivity with few-cycle midinfrared pulses.
    Znakovskaya I; von den Hoff P; Marcus G; Zherebtsov S; Bergues B; Gu X; Deng Y; Vrakking MJ; Kienberger R; Krausz F; de Vivie-Riedle R; Kling MF
    Phys Rev Lett; 2012 Feb; 108(6):063002. PubMed ID: 22401063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THz pulse generation from shaped femtosecond laser pulses interaction with gas-plasma.
    Yang N; Du HW
    Opt Express; 2014 Oct; 22(21):25494-9. PubMed ID: 25401581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond vacuum-ultraviolet pulse measurement by field-ionization dynamics.
    Blanc SP; Qi Z; Sauerbrey R
    Opt Lett; 1995 Feb; 20(3):312-4. PubMed ID: 19859171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionization-induced self-compression of tightly focused femtosecond laser pulses.
    He ZH; Nees JA; Hou B; Krushelnick K; Thomas AG
    Phys Rev Lett; 2014 Dec; 113(26):263904. PubMed ID: 25615338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared.
    Demircan A; Amiranashvili S; Brée C; Morgner U; Steinmeyer G
    Opt Lett; 2014 May; 39(9):2735-8. PubMed ID: 24784090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHz-wide supercontinua of nondispersing subcycle pulses generated by extreme modulational instability.
    Tani F; Travers JC; Russell PS
    Phys Rev Lett; 2013 Jul; 111(3):033902. PubMed ID: 23909325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated attosecond pulses from laser-driven synchrotron radiation.
    Mikhailova JM; Fedorov MV; Karpowicz N; Gibbon P; Platonenko VT; Zheltikov AM; Krausz F
    Phys Rev Lett; 2012 Dec; 109(24):245005. PubMed ID: 23368335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light.
    Nejbauer M; Radzewicz C
    Opt Express; 2012 Jan; 20(3):2136-42. PubMed ID: 22330454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV.
    Brahms C; Austin DR; Tani F; Johnson AS; Garratt D; Travers JC; Tisch JWG; Russell PSJ; Marangos JP
    Opt Lett; 2019 Feb; 44(4):731-734. PubMed ID: 30767973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CITIUS: an infrared-extreme ultraviolet light source for fundamental and applied ultrafast science.
    Grazioli C; Callegari C; Ciavardini A; Coreno M; Frassetto F; Gauthier D; Golob D; Ivanov R; Kivimäki A; Mahieu B; Bučar B; Merhar M; Miotti P; Poletto L; Polo E; Ressel B; Spezzani C; De Ninno G
    Rev Sci Instrum; 2014 Feb; 85(2):023104. PubMed ID: 24593346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal for carrier-envelope-phase stable single-cycle attosecond pulse generation in the extreme-ultraviolet range.
    Tibai Z; Tóth G; Mechler MI; Fülöp JA; Almási G; Hebling J
    Phys Rev Lett; 2014 Sep; 113(10):104801. PubMed ID: 25238363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.